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We investigate the behavior of discrete-time probabilistic cellular automata 
(PCA), which are Markov processes on spin configurations on a d-dimensional 
lattice, from a rigorous statistical mechanics point of view. In particular, we 
exploit, whenever possible, the correspondence between stationary measures on 
the space-time histories of PCAs on 77 a and translation-invariant Gibbs states 
for a related Hamiltonian on 2~d+l) This leads to a simple large-deviation 
formula for the space-time histories of the PCA and a proof that in a 
high-temperature regime the stationary states of the PCA are Gibbsian. We also 
obtain results about entropy, fluctuations, and correlation inequalities, and 
demonstrate uniqueness of the invariant state and exponential decay of correla- 
tions in a high-noise regime. We discuss phase transitions in the low-noise (or 
low-temperature) regime and review Toom's proof of nonergodicity of a certain 
class of PCAs. 

KEY WORDS: Probabilistic cellular automata; statistical mechanics; Gibbs 
measures. 

1. I N T R O D U C T I O N  

I t  has  been  r ecogn i zed  for  a l o n g  t ime  tha t  there  is an  i n t i m a t e  r e l a t i on  

b e t w e e n  P r o b a b i l i s t i c  ce l lu la r  a u t o m a t a  ( P C A ) ,  wh ich  inc lude  de te r -  

min i s t i c  a u t o m a t a  ( C A )  as specia l  l imits ,  in d d i m e n s i o n s  a n d  e q u i l i b r i u m  

s ta t i s t ica l  m o d e l s  ( E S M )  in ( d +  1) d imens ions ,  the  ex t ra  d i m e n s i o n  be ing  

the  d i scre te  t ime. Th is  c o n n e c t i o n  has  been  exp lo i t ed  by D o m a n y  ~1) a n d  

o the r s  ~2-4) to  o b t a i n  i n f o r m a t i o n  a b o u t  the  e q u i l i b r i u m  p rope r t i e s  o f  s o m e  
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(d + 1)-dimensional spin systems from knowledge of specially constructed 
d-dimensional PCAs. There has been, however, only little general study of 
te connection from a mathematically rigorous point of view. (5'6) It is the 
purpose of this article to continue this general study. We include, for 
pedagogical reasons, also a review of some previous work (see refs. 7 and 
8 for earlier reviews of PCAs). In particular, we give the proof (we hope in 
simpler language) of a very beautiful theorem by Toom (9) proving non- 
ergodic behavior for certain PCAs. We hope that this will increase aware- 
ness of the result in the statistical physics community. 

1.1. PCA Formalism 

We consider PCAs which describe the stochastic discrete-time evolu- 
tion of Ising spin variables on regular lattices; for the moment we discuss 
only the lattice 2U. We denote the value of the spin at site ieT/a at time 
neT/ by a , , i=  +1, and write o-n= {an, i } i ~  for the configuration at time 
n; we will occasionally let 9 denote a generic configuration on ;yd. The PCA 
evolves by simultaneous independent updating of spins. That is, the spin 
configuration _o'n_l determines the probabilities Pi(an,,lgn-1) of the spin 
values at each site i at time n, and the conditional probability distribution 
of the corresponding -an is a product measure which we denote by 
P(da, q gn_ 1). The conditional probability of the configuration _an is thus 
given formally by 

[I (1.1) 
i ~ 2 7d 

The transition probabilities satisfy the normalization condition 

p~(a,,,~]_o-,, 1)= 1 (1.2) 
O'n,l = + 1  

which is automatically taken into account by writing 

p , ( a . , , l e ,  l ) = l [ 1 - q - f f n ,  ihi(~_n 1)'] (1.3) 

with Ihi(a_,_ 1)1 ~< 1. We assume that hi is translation invariant and of finite 
range, so that it may conveniently be written in the form of a finite sum 
over finite subsets of Zd: 

h,(~)= Z r Ar/A+ , (1.4) 
A 

where r/B= I-Ij~B r/j and A + i denotes the translation of A by the lattice 
vector i. The r ,  in (1.4) are real numbers and may be viewed as the 
parameters which govern the behavior of the PCA. 
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If 

h~(_t/) = M~(_q) (1.5) 

where M, is a local function taking only the values + ! and - 1 ,  then the 
PCA is a (deterministic) CA. Since the functions h(r/) which depend on k 
spins and satisfy Ih(_~)[ ~< 1 form a cube in R2~ w h o s e c o r n e r s  cor respond to 
the CA (1.5), every h is a convex combina t ion  of such M: 

h,Oj)= ~ q:M~,i(~_), ~ q~=l, q~>O (1.6) 

The evolut ion of the P C A  (1.6) may  be pictured as follows: at  each site a 
choice of determinist ic rule is made,  independent ly  of other  sites and of the 
input  g ,  1, with rule M~ chosen with probabi l i ty  q~, so that  

(~.,~=M~,,(g. ~) with probabi l i ty  q~ (1.7) 

Applicat ions of  this representat ion are discussed in Section 6. 
Equat ions  (1.1)-(1.4) define a discrete-t ime Markov process on the 

space of spin configurat ions on Z d. Given  a measure  p ,  _ 1 on the configura- 
tions a ~ _ l ,  (1.1) defines a probabi l i ty  measure  p , , = p .  ~P on the con- 
figurations ~.: 

fin(dffn)= f pn_l(dffn 1) P(dffnIffn-,) (1.8) 

We say that  a measure  v is stationary or time &variant if v =  vP; it is 
periodic, with per iod k, if vPk=v. The s ta t ionary  measures  for a PCA 
form a n o n e m p t y  convex set. 

1.2. From P C A t o  ESM.. .  

It  is na tura l  to consider { q , } , ~ z  as defining a spin configurat ion g on 
the space-r ime lattice 7/d§ 1; we will write x = (n, i) for a typical site in this 
lattice and let 2 e denote  the d-dimensional  layer corresponding to t ime n. 

n 

By the usual convent ion  of cellular au toma ta ,  we will visualize the time 
axis in Z d+~ as vertical and oriented so that  the past  is at the top and the 
future at the bot tom.  If p is a measure  on the state space of the PCA and 
we "'start" the t ime evolut ion with measure  p on the layer Z d u ,  then the 
M a r k o v  transi t ion rates (1.1) define a measure  # p m  on the set of configura- 
tions on U,,~ N Z,d, - When  p = v is taken to be s ta t ionary  for the time 
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evolution, the N---, oo limit produces a measure #v on the set of space-time 
configurations {g}, which is translation invariant in the time direction and 
whose projection on any 2~ is just v. Similar conclusions hold when v is 
periodic. 

It is a simple observation that if the transition probabilities 
Pi(a~,ilg~ 1) are all strictly positive, i.e., if 

Iho(_~)l < 1 for all _t/ (1.9) 

then gv is a Gibbs measure for the Hamiltonian 

~( (Y)  = E Hx((Yx, _O-n_ 1 )  ( 1 . 1 0 )  
x=(n,i)~Z dTl 

Here, for x = (n, i) the single-site energy is defined by 

exp[ -H:~(ax, a~_ 1)3 = Pi(an, il gn-1) (1.11) 

Equation (1.2) now becomes 

e x p [ -  Hx(~x, o-,_ 1)] --- 1 (1.12) 
~r x -- +1  

The reciprocal temperature fl which usually multiplies the energy in the 
exponent of (1.11) has been absorbed into Hx. 

There are various procedures to define finite-volume Gibbs states 
which, in the thermodynamic limit, yield the space-time measure #v of the 
PCA as an infinite-volume Gibbs state with respect to (1.10). Essentially, 
one must take the finite-volume Gibbs state of (1.10) in special domains 
and impose boundary conditions determined by v on the top, i.e., on the 
boundary corresponding to the past, and appropriate free boundary condi- 
tions on the sides and on the bottom (i.e., the future). For  more details, see 
ref. 6. Note that any measure #7  N is a Gibbs measure on the semi-infinite 
( d+  1)-dimensional domain Un> N 7/~ with boundary condition p on the 
top. 

1 . 3  . . . .  a n d  B a c k  

In the general study of ESM corresponding to some interaction 
Hamiltonian one is interested in all infinite-volume Gibbs measures, that is, 
in all measures which satisfy the DLR equations. (1~ These are obtained as 
limits of finite-volume Gibbs states defined with arbitrary boundary condi- 
tions. The main result in ref. 6 is a characterization of all the translation- 
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invariant or periodic Gibbs measures for those ESM which arise from the 
P C A ~ E S M  construction, that is, for ESM with Hamiltonian (1.10) 
satisfying the constraint (1.12): if p is such a Gibbs measure, then # =/~v for 
some stationary (or time-periodic) measure v for the PCA. Consequently, 
the existence of more than one periodic phase for the ESM implies the 
existence of more than one stationary v for the PCA, obtained by projec- 
tion of # onto 2U. Whether a similar result holds for nonperiodic (in space 
or time) Gibbs measures remains an open question. 

An important consequence of (1.12) is that the finite-volume free 
energy for the ESM is identically zero for the special domains and 
boundary conditions mentioned above (6) or for rectangular regions with 
periodic boundary conditions in space, arbitrary initial conditions at the top, 
and free boundary conditions at the bottom. Moreover, for any boundary 
condition, the free energy is of the order of the size of the boundary region. 
Hence the infinite-volume free energy density, which is independent of 
boundary conditions, is identically zero. In particular, it is analytic in the 
parameters rA of (1.4), even when, as we discuss below, there is a phase 
transition in the sense of ESM. The same analyticity will hold for the 
dependence of the free energy on the interaction coefficients entering the 
Hamiltonian (1.10), whose relation to the r A will be studied shortly. In cer- 
tain cases this analyticity may be shown to hold separately in the entropy 
and energy densities, even when there is a phase transition as the 
parameters change; see (1.30)-(1.32). 

1.4 .  Phase  T r a n s i t i o n s  

We shall refer to any change in some parameter r A which changes the 
number of stationary or periodic measures v for the PCA as a phase 
transition. The existence of more than one stationary or periodic v, which 
corresponds to phase coexistence in the ESM, is to be contrasted to the 
case of ergodic behavior for the PCA when, for any initial state p, ppn con- 
verges as n ---, oe to a unique invariant measure v. One way to ensure non- 
ergodicity in the PCA, realized in a construction due to Domany,/~) is 
to consider a PCA with dimension d =  2 for which all Gibbs states for 
the Ising model with nearest-neighbor ferromagnetic interactions are 
stationary. This Ising model is known to have a phase transition as the 
interaction strength J is varied. Hence, for J >  Jc there will be two stationary 
states v+ and v_ for the PCA and two phases/~v+ and/~v_ for the three- 
dimensional ESM, corresponding to positive and negative spontaneous 
magnetization. In Section 5 we discuss this model further, as well as a class 
of models due to Toom, (9) also with d =  2, in which the two-dimensional 
stationary measures are not explicitly known, but for which Toom was able 
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to prove nonergodicity using (in the ESM language) a rather unconven- 
tional Peierls argument. Whether such phase transitions can also occur in 
d =  1 PCAs, corresponding to ESM in two dimensions, is an interesting 
question: see the discussion of the positive rates conjecture in ref. 13, and 
also ref. 14. Some of the issues are illustrated in the following example. 

E x a m p l e  1 . l .  Majority rule in one dimension. A spin at time n takes 
the value of the majority of itself and its two neighbors at time n - 1 with 
probability 1 - 5 ;  in the notation of (1.3), 

hi(_~) = (1 - 2e) sgn(t/i_ ~ + q, + t/i+ 1) (1.13) 

with sgn(2) the sign of 2. The single-site Hamiltonian corresponding to 
(1.13) is 

Ho(a0, ff 1)--m"--/~0"0(0"_ 1, 1+0"  1,0-[- O" 1,1) 

-+- flO'o0" 1,_10- 1,00- 1,1+log(2cosh2/~) (1.14) 

where fl = (1/4) log[-(1 - e ) / e ] .  The Hamiltonian H o contains ferromagnetic 
two-body and antiferromagnetic four-body interactions. Due to the balance 
between these two, there is an infinite number of ground states correspond- 
ing to trajectories of the (deterministic) cellular automata obtained by 
setting e = 0 or e = 1. These properties are in fact typical for equilibrium 
systems on the disorder line in parameter space. (11'12) The case 5-- 1/2 gives 
fl = 0, which corresponds to infinite temperature in the ESM. It is easy to 
show that there is a unique Gibbs measure for (1.14) if fl is sufficiently 
small and, correspondingly, ergodic behavior of the PCA for e close to 1/2 
(1/4 < 5 < 3/4 suffices, by the results of Section 5). Gray (15) showed that the 
PCA is ergodic for sufficiently small e, and recently (16) has extended the 
result to prove that this one-dimensional PCA has a unique invariant 
measure for all 5, 0 < e < 1. This example is discussed further at several 
points in Section 6. 

1.5. St ructura l  Relat ion of PCA w i th  ESM 

The normalization (1.12) imposes strong constraints on the inter- 
actions of the (d+  1)-dimensional ESM arising from PCA. Also, it is clear 
that due to the special role of the past in a PCA, the interactions will in 
general be highly anisotropic. To obtain explicit relations, we rewrite (1.11 ) 
using (1.3) as 

Ho(0-o, q) - -~JRaR=aoQo(~_)+logE2coshQo(~_)] (1.15) 
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with 

1 - ho(rt)] Qo(~) =~l~ [ ] + ~  j (1.16) 

that is, 

ho(_q) = - t a n h  Qo(_r/) (1.17) 

Rewriting (1.3) as 

ho(q) = ~ ?~/A~ (1.18) 

with r~-~rA~ , w e  find from (1.ll) 

Ho(~o, _q) = --log{ [1 + ~oho(_~)]/2} 

= --~ E K./ U rIA~ 
7 = { 1,..., m}  ctE7 

I~1 odd  

+ ~ Ks H ~/A~+log 2 (1.19) 
? ~ {1,..., m} ~ e y  

['/| even  

where 

K~= ~ '  r~ k ~ - i  ! 
k l , . . .  , k m = 0  ~ =  1 ~ cl 1 

(1.20) 

and in the primed sum the k~ are not all zero and k~ is odd (respectively 
even) if e e 7 (respectively e ~ ~). The JR are now easy to compute. We also 
note here that each "bond" entering into the interaction log[2 cosh Qo(9)], 
that is, each set B such that ~ appears in the second sum in (1.19), is a 
symmetric difference of an even number of bonds in Qo(q)- 

Conversely, given any translation-invariant Hami]tonian on Z J§ 
which can be written as a sum of Hx's, with H o of the form (1.15), there 
is a corresponding PCA defined by (1.17). For example, if we take 
Qo(q) = --J~A, then 

ho(_r/) = (tanh J) r/A (1.21) 

while for Qo(~)= --JI~AI--J2Y]A2, we have 

ho(~) = 7i ~/AI + 72 r/A2 (1.22) 
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with 

sinh 2J~ 
~ = e = 1, 2 (1.23) 

cosh 2J  1 + cosh 2J  2 ' 

The situation gets of course more complicated as the number of sets 
A increases. It is, however, useful to note that the relation between the coef- 
ficients of the t/Ao in ho and Qo given in (1.19)-(1.23) remains valid when 
the t/A" there are replaced by functions M~(t/) such that IMA~ I = 1, as in 
(1.6) or (1.13). 

1.6. E n t r o p y  

We now consider the problem of defining some measure of the noise 
or randomness in a PCA. If we are given some spin configuration _t/on Z d, 
then the natural measure of the randomness in the conditional distribution 
Po(O013) for the spin at site 0 is the conditional entropy 

So(_ t / ) - -  ~ po(~ol_t/)logpo(aol_t/) (1.24) 
o-0= +1 

We define the noise associated with the PCA as the maximum possible 
value of this conditional entropy: 

JV = max So(_q) (1.25) 

This definition has the attractive feature that the PCA noise is an upper 
bound for the entropy per site ~(#v) for any translation-invariant or 
periodic state #v of the ESM, which is in fact the same as the Ko lmogorov-  
Sinai space-time entropy for the PCA process. (17~ This entropy was shown 
in ref. 6 to be given by (So)v, which from (1.25) clearly satisfies 

g(#v) = (So)v ~< ./V" (1.26) 

The definition (1.25) can be generalized immediately to PCA in which the 
spins can take on more than two values. 

In our current case in which a = 4-1 it is natural to think in terms of 
the functions hi(r/) defined in (1.3), which characterize the evolution of the 
PCA. Then 

JV" = - e  log e - (1 - e) log(1 - e) (1.27) 

where e =  e(h)= �89 max_,(1-  Ih(_t/)l). The simplest case is that of a (deter- 
ministic) CA (1.5), for which the noise is of course zero. In other simple 
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cases the noise is a monotonic function of a single parameter. Frequently 
used rules of this type are 

h,(_r/) = (1 - 2 e ) M , ( ~ ) ,  O~<e~< 1/2 (1.28) 

with Mi as above, of which the majority rule (1.13) is an example, and a 
rule (sometimes called thermal dynamics (18)) analogous to conventional 
Monte Carlo updating: 

hi(_r/)=tanh(/~ ~ r / j+b)  (1.29) 
j e U + i  

with U c 7/d some finite set. 
We make several additional remarks. First, s(~) is independent of_q for 

PCA of the type (1.28), so that the ESM entropy per site is 

d(#v) = s(_r/) = -~  log e - (1 - ~) log(1 - ~) (1.30) 

It is easy to see that 

(~roMo(-a-1)) = 1 - 2~ (1.31) 

and from (1.30) and (1.31) to rederive the vanishing of the infinite-volume 
free energy (the pressure) for these models: 

~(~tv)- (no(~o/_o-_,))~ = 0  (1.32) 

Second, by the concavity of f ( t )=  - t  log t we have 

g(#v) <~ f (<p(1 [_q) ),.) + f (<p (  - 1 ]_r/) )v ) 

= f((1 + m)/2) + f((1 -- m)/2) 
(1.33) 

where m = ( a o ) ~ .  Finally, it follows from (1.26) that the "zero- 
temperature" state obtained as a limit of Gibbs states of the ESM when the 
PCA noise goes to zero has zero entropy per site, i.e., that the degeneracy 
of the ground state of the ESM cannot be too large. 

1.7. O u t l i n e  of  the  Paper  

In Section 2 we make use of the PCA-ESM correspondence to apply 
the theory of fluctuations and of large deviations for Gibbs states to the 
time evolution of the PCA. This yields simple Gibbs measures, generally 
not of the PCA type, for the probability distributions of configurations in 
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a space-time cube characterized by having a large fluctuation in the 
magnetization density. Section 3 is devoted to the review and extension of 
inequalities which hold for certain special PCAs: those having positive 
dynamics and those which are attractive. In Section 4 we give a specifica- 
tion of a "high-noise" regime and a characterization of the unique invariant 
measure which exists there: it is shown to be a Gibbs measure for a 
d-dimensional Hamiltonian and to have exponentially decaying correla- 
tions. In Section 5 we discuss phase transitions and present the models of 
Domany, which involves updating the lattice in several steps, and Toom. 
The Toom model phase diagram is discussed, following Bennett and 
Grinstein. (19) We also describe there a new mean field approximation. 
Section 6 is devoted to various remarks and some open problems. The 
proof of Toom's theorem is given in the Appendix. 

It should be noted finally that we do not consider in this paper the 
types of PCAs which are used to model hydrodynamics (for an introduc- 
tion to such models, with further references, see ref. 20). These PCA evolve 
by particle exchanges and their special behavior depends on the existence 
of corresponding a priori conservation laws, so that in particular (1.9) is 
violated; the conservation laws introduce constraints on the permissible 
configurations which make the space-time measures behave in a quite 
different way from those considered here. It is posssible, however, that 
such models may be profitably studied as limits of PCAs to which the 
PCA-ESM correspondence applies. 

2. F L U C T U A T I O N S  

The PCA-ESM correspondence has a straightforward application to 
the problem of space-time fluctuations in the stationary Markov process. 
We can apply here directly the well-developed theory of fluctuations--both 
typical (21'22) and large deviations(Z3'Z4~--of Gibbs states. 

Let us start with the normal fluctuations of /~, where v is a 
translation-invariant stationary state of the PCA with average magnetiza- 
tion m = (ao) .  We then have, whenever the truncated pair correlation 

(O-OO'x) -- ( a o )  (o-~) = (O'OO-x) --m 2 (2.1) 

defined with respect to #v, is summable, that the mean square fluctuations 
in a box A c Y  a+~, divided by IAI, 

XA - - ] ~  (02~-- m) (2.2) 
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tends, as A 7 Z ~+ 1, to a well-defined limit, 

Z -  ~, [<aoerx>-m2]=limza (2.3) 
x ~ Z d + l  A 

Under the same conditions when Pv satisfies the F K G  inequalities and 
under somewhat stronger conditions otherwise, (2''22) we also have that for 
r E Z d+ ' the field 

1 
~L(r)=L(d+l)/2 ~ lax--m] (2.4) 

X E FLr 

where FLr is a cube of side L centered at Lr, converges (in distribution) to 
a free Gaussian field ~(r) with mean zero and variance Z. 

Similar results hold for fluctuations in other local variables, e.g., if 
F~(g) is a function which depends on ~r A, A a fixed set contained in a finite 
cube with center at 0, and A + x its translate by x, then 

ZA(F) -- -~l FA + x - <FA ) A i" Z'+' ' z(F) 

= ~ [ < F a + x F A ) -  <FA)  2] (2.5) 
x ~ Z d  ~I 

The convergence to a Gaussian free field now proceeds as before. 

2.1. Large Dev ia t ions  

Let us consider again the space-time measure/*v in which < ~ o ) =  m, 
which we assume to be translation invariant. We may now ask for the 
probability to find in a box A c 7/J+l a magnetization 

1 
M A ( g ) = 7 7  ~ ax (2.6) 

I ~ l  x ~ A  

which is larger than some M e  [ - 1 ,  1], or, more generally, takes on a 
value in some interval (a, b). If M > m, or if m r (a, b), then these events are 
very unlikely and the probability of their occurrence will go to zero as the 
box A grows. The PCA ESM correspondence makes available the 
well-established large-deviation theory for E S M  (23'24) to study the history 
of the stationary PCA. We define (free energy) functions 

fA(O) =- ~A[ log<exp[0 IA[ MA(_~)] > (2.7) 

822/'59/1-2-9 
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and let 

f(O)- lim fA(O) (2.8) 
A~,Zd+I 

f(O) will exist for all 0 e N. Denoting the Legendre transform of f by 

I (s )= sup [Os-f(O)] ,  se  [ - 1 ,  1] (2.9) 
0 m [ ~  

one can show (see, for example, ref. 23) that the following large-deviation 
estimate holds: 

1 
lim -:-~ l o g { P r o b [ M A ( a ) e ( a , b ) ] } = -  inf I(s) (2.10) 

A -~ / / d + l  [ A ]  " " -  a < s < b  

We note here that the measure which describes the state with the 
magnetization M r  m is the Gibbs measure #~, obtained by adding a con- 
stant magnetic field b to the ESM, that is, changing H x into H x + bax. This 
measure will in general not describe the space-time paths of a PCA of the 
type consi(tered here, that is, Pb(dan [gn-1) will not be a product measure. 
We do not know at the present time, however, whether #~ corresponds to 
some more general Markov process on the state space { -  1, 1 } ~, that is, 
whether #~ has the global Markov property in the time direction. An easy 
exception to the above general rule is the case in which only two sets, 
corresponding to the empty set and to a single site, occur in (1.3): At = Z ,  
A2 = {i}. In this case, which always occurs when d = 0  and #v thus 
describes a one-dimensional Markov chain on the state space { -  1, 1 }, the 
Gibbs state #b will still describe a Markov chain. 

Relations similar to (2.10) hold also for other observables. It is not 
clear, however, to us at present how to extend (2.10) to incorporate 
statements about equal time or equal site events for the PCA, since that 
would require special choices for the volumes A. There is, however, a cer- 
tain regime for the PCA in which we have a more complete picture, and 
in which, for example, the results of refs. 25 and 26 about the asymptotics 
of occurrence times of rare events for PCAs can be recovered by applying 
the large-deviation theory for Gibbs states. We discuss this briefly at the 
end of Section 4. 

3. I N E Q U A L I T I E S  

When all the rA's in (1.4) are nonnegative, which ipsofacto implies 
that 52 rA ~< 1, we say that the PCA has positive dynamics. It is then easy 
to show (5) that if the measure p on spin configurations g - u  has positive 
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correlations, i.e., ( a B )  p ~ 0 for any finite B c 2 d N ,  then the measure pp N 
on spin configurations in the future of - N  also has positive correlations: 

n ~  --N 

Furthermore, the ( a c ) ,  .~ are nondecreasing in the rA's and in the initial 
�9 , p 

correlations. In particular, if ppn converges, as n ~ o% to a (stationary) 
measure v, then 

(ac)~,.~> 0 (3.2) 

for all C c •a+ 1. 
It follows from (3.2) and the identity ( ao )~  = (ho),, .  that if 

Z , i+  rA,A (3.3) 
i ~ u IAI>~2 

we have 

F0 
(ao)~,, = m >~ - 2  (3.4) 

1 - - I U I  r l  

As a further consequence, (1.33) implies 

d(/t~) ~< f ( (1  + 2)/2) + f((1 - ,~)/2) (3.5) 

Positive dynamics for the PCA will also imply positivity of the 
correlations for the Gibbs state # r  of the Hamiltonian (1.6) in a cube 
F c  7/d+l with the periodic boundary conditions in the space directions, 
+ 1 boundary conditions on the top, and free boundary conditions on the 
bottom�9 This follows from the simple observation that the expectation 
value of ac,  C c F, in such a state can be written as 

a y =  + I ,  y E F  - -  x e F  A 

which is clearly nonnegative for r A/> 0. In (3.6) the translation has to be 
interpreted in a periodic way, and the ax's in the top layer set to + I. 
Clearly the same will hold for any other domain with boundary conditions 
leading to a structure like (3.6) and for any infinite-volume limits of such 
states�9 It also follows from (3.6) that 

(axaB+x)ur>~ rB (3.7) 
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for any B c  F. One may generalize (3.7) to obtain improved lower bounds 
on (~rc) by considering any number of terms in the expansion of the 
product in (3.6). 

The equation 
(ac)  ~0 (3.8) 

is just the first Griffiths inequality 127) for ferromagnetic equilibrium systems, 
i.e., those for which JR/> 0, for all R. For a PCA with positive dynamics the 
part of tto(ao, ~) corresponding to ~0Q0(5) will in fact be ferromagnetic, 
but the other part, log cosh Qo(_t/), will have negative JR's, so that the PCA 
inequality is an independent result. The converse of the first statement 
above is not true: h o ( y ) - - t a n h  Qo(~) does not necessarily define a 
positive dynamics even when Q0(y)= - Z R  JR~R with JR/> 0. 

A positive dynamics thus shares some properties with ferromagnets. In 
fact, replacing rB~B+x in (3.6) by f i e +  F B + x ) ~ . x ,  taking the derivative 
with respect to FB+x, and then setting FB.x to zero, we obtain 

~(acax)  1 
~rB+x 2 (~caB+xe~Ix(~)) >~O (3.9) 

Summing over all sets B yields 

O~B+------~ re= ~c 1--~ eHx(~ ~0 (3.10) 

These inequalities have the flavor of the second Griffiths inequality 
(O(~Zc)/OJB= (acaB)--(ac)(aB)~>0),  but so far we have not found 
any interesting applications of (3.9) and (3.10). Note that it was shown in 
ref. 5 that the condition (aA)p >/0 is not sufficient to ensure the validity of 
the second Griffiths inequality for PCA with positive dynamics, although 
the possibility of its general validity when p is the stationary measure was 
not ruled out. It follows from ref. 28, however, that if we replace H o in 
(1.15) by 

H~)(Cro, t/) = ~ro Qo(r/) + ~ log[2 cosh Qo(q)] (3.11) 

then the resulting equilibrium system (which will not be equivalent to a 
PCA for ~ ~ 1) will satisfy both Griffiths inequalities whenever o-oQo(r/) is 
ferromagneic and e is sufficiently small. We discuss these points further in 
Section 6. 

3.1. FKG Inequal i t ies  

We say that a function f(_o'A) is nondecreasing if f(ff-A) >~f(~_A) when- 
ever cr i >/t h for all i ~ A; see ref. 13. A PCA is attractive if the function ho(~r ) 
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in (1.3) is nondecreasing. An attractive dynamics has the property that it 
preserves positive correlations between nondecreasing functions, i.e., if the 
initial measure p satisfies the F K G  inequalities (29) 

(fg)p>>" ( f ) o  (g)p (3.12) 

for any two nondecreasing f and g, then so does the measure on 
space-time configurations, i.e., 

(FG),;~>~ (F)~;~ ( G ) , # ,  (3.13) 

with F, G again nondecreasing. Following ref. 30, one can then derive 
bounds on the decay of the correlations between two widely separated sets 
(in space and time) of spins in terms of the decay of time-displaced pair 
correlations. For more details see ref. 5. 

The proof of (3.13) is based on the observations that: (i) for any fixed 
fin, P(df-n [ -O-n 1) is a product measure which satisfies the F K G  inequalities, 
and (ii) for an attractive dynamics, S P(da.  [g._ i) f ( g . ,  gn-  1,---, qn-k) is 
increasing whenever f is increasing. We note also that (3.12) is satisfied for 
p = 6  7, the measure concentrated on the configuration r/. A particular 
consequence of attractive dynamics is that, for such PCA, ergodicity is 
equivalent to 

lim [(Oo)~+m,-  (ao)~ e"] = 0  (3.14) 
n]'oe 

where 6+ (respectively 6 ) is the delta measure on the configuration with 
all spin values equal to 1 (respectively -1 ) .  (13'31) 

4. THE  H I G H - N O I S E  R E G I M E  

The high-temperature regime in an ESM with finite-range interactions 
is characterized by the uniqueness of the Gibbs state and by exponential 
decay of correlations and their analytic dependence on the interaction 
parameters. (32) The PCA-ESM correspondence implies that any such 
high-temperature theory for the Gibbs state will find its equivalent as a 
high-noise theory for PCAs [-or more precisely, for those PCAs which 
satisfy (1.9) and hence for which the correspondence is well defined]. In 
this regime the well-established ESM theory tells us a great deal about the 
properties of the state #v, including the high-temperature expansion of the 
(d+  1)-dimensional correlation functions, (33) and implies that the state v 
itself is Gibbsian, as we discuss below. Here, however, we will take another 
route to obtain some of these results for the PCA. 

The ESM high-temperature regime corresponds to the smallness of 
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all interaction coefficients JR, with /R] ~>2, in the Hamiltonian (1.15); a 
complete characterization is given by the criterion of Dobrushin and 
Shlosman. (34) For ESM which arise from a PCA, however, the JR are not 
independent [due to the normalization condition (1.12)] and therefore 
other, simpler high-T criteria (for example, the Dobrushin single-site 
condition (3s)) on the interactions may be unnecessarily restrictive in the 
PCA context. For this reason, and because the correspondence is not valid 
for all PCAs, we will formulate high-noise conditions for PCAs directly in 
terms of the rA. The conditions we will give do not in general correspond 
to high temperature in the usual sense (some JR may be infinite), but they 
will give rise to a behavior of the PCA which is relatively simple; in 
particular, which is close to a situation of independently evolving spins. 
We will return below to the high-temperature regime defined by the 
Dobrushin-Shlosman criterion when we discuss the Gibbsian nature of the 
PCA measure v. 

4.1. High-Noise Conditions 

We give'two independent conditions, either of which may serve to 
characterize a high-noise regime. 

Condition 1: 

6 1 - ~  IrA[ < 1 (4.1) 
A 

This kind of condition first appeared in the work of Holley and 
Stroock, (36) where, using duality, (4.1) was shown to give exponential 
ergodicity of the corresponding continuous-time process. A discussion of 
this approach is contained in Liggett's book. (13) Condition (4.1) was also 
discussed in the context of PCAs in ref. 5. The proof we present below uses 
(4.1) in a direct way, i.e., without using any duality or domination 
arguments. 

Note that the condition (4.1) is automatically satisfied for any 
three-input dynamics of the form 

ho(g ) = f l  OA, + f20A2 + r'3 0",43 (4.2) 

with IlhoH < 1. By (1.22) (1.23) the same conclusion holds when Qo in 
(1.15) involves only two terms; absence of spontaneous magnetization 
when these two terms are single spins and the system is symmetric under 
spin inversion was obtained independently in ref. 18. Similarly, any PCA 
with positive dynamics, as defined in Section 3, verifies 61 < 1, whenever the 
configuration ~ , . i -  1 is not a trap. 
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Condit ion 2: 

3 2 - ~ s u p  ~ A~j rAaA <1 (4.3) 
J 

This is a discrete version of the well-known M < e  or Dobrushin 
condition for exponential ergodicity of interacting particle systems. (13'37'3s) 
Note that 

32 = ~ sup [ho(U) - ho(_a)]/2 
j -~ 

= ~  sup [ P o ( ' [ q 0 -  Po('[q)t (4.4) 
j 

where a j is the configuration obtained from _a by flipping the spin at site 
j. It is easy to see from (4.4) that the Dobrushin single-site condition (35) for 
the Gibbs measure /~, is always more restrictive than condition (4.3): in 
(4.4), only those variations in the probability distribution of ao are con- 
sidered which are due to changing a spin value in the past. Moreover, (4.3) 
may be verified for dynamics possessing a trapping configuration (for 
example, in the BG model discussed in Section 5 with p = 0) and for which, 
as a consequence, (1.9) is violated and the PCA-ESM correspondence 
is singular. Steif (39) has independently obtained a stronger convergence 
result under the assumption (4.3), from which he shows the space-time 
Bernoullicity of the PCA (in the sense of ergodic theory, with respect to 
translations in 2 a+ 1). 

4.2. Results 

We will show that condition (4.1) or (4.3) produces an exponential 
convergence to a unique stationary state. It then follows quite easily that 
this state has exponential decay of correlations. To get a more formal state- 
ment of these facts, we need to introduce some notation. We will, however, 
postpone defining the appropriate seminorms, etc., until we actually give 
the proofs of the various theorems. 

In this section g will denote a spin configuration on 77 a, not 77 a+ 1. Let 
f (q)  denote a function of the spin configuration in a finite region, say 
A c7/d. The PCA defines, via (1.1), the operation 

Pf(q_ ) - f f (a )  P(dalq_ ) (4.5) 

Note that pnf(~_) is the expectation value of the function f at time n if the 
PCA was started at time zero from configuration _t/. We write 

][F[[ = sup [F(~)[ (4.6) 
t/ 
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T h e o r e m  1. Suppose that either (4.1) or (4.3) holds. Then the PCA 
is ergodic and 

.< 2c( f )  6" 
] l P ' f -  ( f )v l l  --~ ~ (4.7) 

where v is the unique invariant measure, ~=~5~ or 6=c~ 2 according to 
whether (4.1) or (4.3), respectively, is satisfied, and c ( f ) <  oo is a constant 
which depends on the function f.  

Since we have restricted ourselves to finite-range PCA, there is some 
integer r < oo such that ho(_a) does not depend on any ai for which [i1 ~> r, 
where lil = Z ~ = I  Jill for i=( i l  ..... ia )Ez  d. Let now g(_o-) be another func- 
tion, depending on the configuration of spins in the finite region B c Z ~. 
We write d(A, B) for the distance between the two sets A and B. 

T h e o r e m  2. Under the same hypothesis as for Theorem 1 and 
using the same notation, 

I[P"fg - P"fP"g[f <~ 6c( f )  c(g) 6a(A,m/2 ~ (4.8) 
1--3 

and, in particular, I ( f g ) v - ( f ) v  (g )v l  satisfies the same bound (4.8). 

Proofs. Let A be any finite region in 77 a and define, for every con- 
tinuous [in the uniform topology given by the sup norm (4.6)] function F, 
the coefficient ZA(F) given by the expectation of F(g)aA in the product 
measure which assigns equal weights to ~ = _+1. Thus 

�9 1 

2A(F)--Di I~o,= +IlF(E) a A (4.9) 

and formally F =  ZA ZA(F) 0A ; for example, 2A(ho) = r a. We denote by D1 
the space of continuous functions F for which 

Cl(F) = 2 [)~A(/V)I < oO (4.10) 

Following Dobrushin and others, (13'35'3s) we define the variation of F under 
a spin flip at site i 6 Z d by 

A r( i) =-- sup IF(Ei) -- F(E )] (4.11) 

and the corresponding space O 2 of continuous functions F for which 

c2(F) = ~, AF(i) < oo (4.12) 
i E Z  d 
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k e m m a  1. If ~1 ~ 1, then, for all f e D 1 ,  

cl(Pf) <~ 61 cl( f )  

Proof. Since f(_o-) = ZA 2A(f) aA, we have 

Pf(~) = ~  2A(f) 1-] h,(t/) 
A l E A  

Therefore, 

with 
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(4.13) 

(4.14) 

for any finite A, B c  ~,d. If A is the empty set, then (4.16) is zero unless B 
is also empty: 

M~B = 6~B (4.17) 

If A = {il . . . . .  im} is not empty, then some computation shows that 

m 

MAB=E'  [I  rK, (4.18) 
t=l 

where the primed sum is over all sets K 1 ..... K m such that 

(KI + il) A (Kz + i2) A ... A (Km + im)= B (4.19) 

for A the symmetric difference of sets. Hence, 

2 ]MABI ~ 2 ~I rr*:,] = c5'~' (4.20) 
B ~  KI,. . . ,Km /=1 

Combining (4.17) and (4.20) with (4.15) gives the desired bound (4.13). | 

L o m m a  2. For all fED2,  

c2(Pf) <~ 62c2(f) (4.21) 

ProoL For i c y  d, 

P f ( f )  - Pf(_q) = f f ( q ) [ P ( d g  [_q') - P(dff [_r/)] (4.22) 

2.(Pf)  = ~ zA(f) M~B (4.15) 
A 
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Clearly, 

P(da I _~ i) - P(d_a I ~) 

=P(d-aR(i)c]_r/)[ V[ p j ( a : l r / ) - - 1 ]  Pj(%[Y)]po(d-aR.))(4.23) 
je  R(i) je  R(i) 

where R(i) =- {j e E d ] pj (. ]~i) _ pj (. ]q) r 0 } and P0 is a counting measure. 
The bracketed factor in (4.23) can be written as a telescoping sum by 
introducing an arbitrary order in R(i): 

l-[ Pj(~/I_~+) - 1-[ pj(~r:l_~) 
jER(i) jeR(i) 

~R( [ ~I P k ( a k ' t l i ) ]  [PJ((TJt~-i)--PJ(aJ 'r])] 
~ j  i) k~R(i) - 

k< j  

k > j  

Substituting (4.24) in (4.23) and using (4.22) gives 

1 
Ap:(i)<~- ~ sup Ih:(rl*)-hjO?)L A:(j) (4.25) 

2jeR( i )  ~_ - _ 

The bound (4.21) is now easily obtained from (4.25) by summing over 
i ~ Z  d. | 

Given Lemmas 1 and 2, the proofs of Theorems 1 and 2 are standard; 
see, for example, ref. 13. We give them here for completeness. From now on 
we use the convention that we write 6, D, and c(f) instead of ~1, D1, and 
el(f) or instead of 62, D2, and c2(f)  according to which of the conditions 
(4.1) or (4.3) is satisfied. 

Proof of Theorem 1. From 

I f (P -  1 ) f  II = I I (P-  1 ) I f -  2;~(f)]  II -< 2c(f )  

and Lemmas 1 and 2, it follows that, for any m > n > 0, 
m 1 m--I ,~[ r 

IlP"f-P"fll = Z (P-1)P~f  <~2 Z c ( P k f ) < ~ 5 "  (4.26) 
k- n k=n 

Hence, lim,~oo P"f exists. The bound (4.13) or (4.21) implies then that 
lim, P'f must be constant. On the other hand, for all n = 0, 1, 2 ..... 

(P"f)~ = ( f ) ~  (4.27) 
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for any invariant measure v. It follows that 

lira P~f = ( f )~ 
n 

(4.28) 

for all f e D .  Equation (4.27) determines v uniquely, since the space D is 
dense in the space C of continuous functions. Equation (4.6) follows by 
taking the m ~ oe limit in (4.26) and using (4.28). | 

Proof of  Theorem 2. Let N be the smallest integer greater than or 
equal to d(A, B)/2r. Then, for all n ~< N, 

p~fg _ pnfp~g = 0 

Take now n > N. Then from (4.26), 

(4.29) 

[Ip~fg - pnfp~gl l  

< IIpNfg - PNfPNglt  + liP~fg - P~Jg]l 

+ I IPnf  [] " I I P ~ g - P N g i l  + IIPNgll �9 I F P n f - P N f ! I  

.< 2c(fg) 5N -~ 2e(g) [If II 5N + 2c ( f )  II gH 5 N (4.30) 
1 - 5  1 - 5  1 - 5  

It has no effect on the lhs or the rhs of (4.30) to assume that 
2 ~ ( f )  = 2~(g)  = 0. For such functions, I[ fgN <~ c ( f )  c(g), II f dl ~< c(f) ,  and 
Jlgll ~<c(g). Substituting these inequalities in (4.30) and using 
N>~ d(A, B)/2r yields (4.8). The rest of Theorem 2 is an immediate conse- 
quence of Theorem 1. | 

We remark that the assumptions of translation invariance and of finite 
range are not essential for the arguments presented here. The appropriate 
conditions in a more general context are easy to reconstruct; see also 
Section 6. 

4.3. Gibbsian Nature of the PCA Measure at High Temperature 

We now turn to the question of whether the measure v itself is a Gibbs 
measure for some Hamiltonian on spin configurations ~. This question is 
in general very difficult; we refer to K/insch (4~ for a discussion of the 
continuous-time case. For  PCAs which satisfy (1.9), so that the PCA-ESM 
correspondence is well defined, the question can be answered in the 
affirmative in the Dobrushin-Shlosman high-temperature regime for the 
ESM. We begin by recalling the definition of this regime. 

We write ~ for a spin configuration on Z d+l and _~v for the restriction 
of this configuration to V~ Z a+l. Let W ~  V be finite subsets of Z a+ 1, 
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and for any _~ let #v,w('l~_v~) be the ESM Gibbs measure in W induced 
by imposing ~w as boundary conditions outside V, that is, for 
X c { + I , - 1 }  w, 

,Uv, w ( X l ~ v c ) = Z  -1 ~ e x p [ -  ~ Hx({x,~)]  (4.31) 
{~_vlr x~ v 

Then the ESM is in the Dobrushin-Shlosman regime if and only if there 
exist constants K, 7 > 0 such that, for any V and W as above and any ~1 
and _~2 for which _~1c and _~  differ only at some site x e  V c, we have 

' w(XI ~2c)l <~Ke -~dist(W'x) (4.32) 

Every ESM satisfies (4.32) at sufficiently high temperature and (4.32) 
implies that the Gibbs state in infinite volume is unique. Finally, it follows 
immediately from (4.32) that there exist K' and ~' such that, when _~w and 
_~  differ on U c  V ~, 

~v, w(Xl  ~ v~)l ~< K'IWI e - ' '  di~t(w' t:) I#v, w ( X l _ ~ ) -  _2 (4.33) 

Now we can state the following result. 

T h e o r e m  :3. Suppose that the PCA satisfies (1.9), and that the 
corresponding ESM is in the Dobrushin Shlosman regime. Then the 
stationary measure v is unique and is a Gibbs state. 

Proof.  We will regard v as a measure on 2oacZd+~; v is unique 
because it is the marginal density of the unique Gibbs measure # , - -  # for 
the ESM. Let r be an arbitrary spin configuration on 7/oa. To prove that v 
is Gibbsian, it suffices, by ref. 41, to show that the conditional probabilities 

V o ( ~ _ ) - P r o b [ a o = ~ o l a j = ~ j f o r  all j eZoa \{0} ]  (4.34) 

are strictly positive and continuous in ~. [-The probability in (4.34) may be 
equivalently regarded as defined using either v or #.] The strict positivity 
is an immediate consequence of the assumption tlh01l < 1. To prove the con- 
tinuity, we introduce a sequence {Ak} of d-cubes in 7/oa centered around the 
origin, with side length 2k. The conditional probability 

V~ok)(~_)=Prob[ao=~olaj=~.j for j e A k \ { 0 } ]  (4.35) 

is clearly continuous in ~; we will prove the uniform convergence of v(0 k) to 
v o, so that Vo is also continuous. Thus, we must show that for k > l the 
differences 

I v ~ok~(_~)- V(o~)(~)l (4.36) 
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are arbitrarily small for sufficiently large l, uniformly in { and k. This is 
equivalent to obtaining a uniform estimate for 

Iv (ok)(_~ 1 ) --  V(ok)(~2) I (4.37) 

with ~1 = ~ 2  = ~ on Al. 
Now introduce a large (d+  1)-cube V,, c Z d+l centered at the origin, 

with side length 2m satisfying m >k.  For X c  { + 1, - 1  }Ak, 

#(x)-- ,,(x)= f l,,~,~(xj ~ ~ 2) ~,(d_() (4.38) 

By (4.33), however, #v,,,Ak( "F-(V 2) depends only weakly on _( for large m, so 
that, by (4.38), we may calculate probabilities or conditional probabilities 
in A k to order e - 7 ' ( m - k )  using PV,,,.Ak(' t (V~,), for any fixed (. Thus, if Wm= 
(Vm\Ak) vo {0} and _(1 and _(2 agree witla _~1 and _~2, respectively, in Ak and 
with each other in A~, the above remark implies that 

IV(ok)(~i)-,aWm.{O}({(o = ~0} ]('w2)l ~K1 e-y'(m k) (4.39) 

Another application of (4.33) yields 

I/*w~,{o~({(o = ~0} ]_(~w 2) - #wm,{o}({(o = ~o} I_(22)1 ~ K ' e - / '  (4.40) 

Estimates (4.39) and (4.40) lead to the desired uniform bound on (4.37). | 

The Gibbsian nature of the invariant measure v implies, among other 
things, that a more complete fluctuation theory is available for v than 
would apply in general. In particular, one may use large-deviation theory 
for Gibbs states to obtain results similar to those of refs. 25 and 26. This is 
in contrast to the general situation discussed in Section 2, where we could 
consider only large deviations in the space-time measure Pv. 

5. P H A S E  T R A N S I T I O N S  A N D  THE T O O M  M O D E L  

Our goal in this section is to describe several PCAs for which at least 
two phases exist at low noise levels. The particular models that we study 
appear to be most conveniently defined on a more general class of lattice 
geometries than we considered earlier. To motivate this development, we 
consider first a well-known example: implemention of parallel Monte Carlo 
dynamics for an equilibrium lattice system by alternate updating of sites on 
two sublattices. 

Example  5 . 1 .  Let fl_(o~ be a d-dimensional lattice which is the union 
of two disjoint sublattices D_ (+) and [L (- 7, arranged so that nearest neighbor 



140 Lebowi tz  et al. 

sites lie in different sublattices; for example, take L(~ 7/J. Suppose that 
~(o) is a spin Hamiltonian on ~_(o) containing only one-body terms or 
two-body nearest-neighbor interactions: 

~ ( o ) _ _ _ j  ~ ai~j-b~,  (5.1) 
( i , j )  i 

We define a stochastic evolution of the spin configuration on D_ (~ in which 
spins on the sublattices are updated at alternate times, with probabilities 
given by the Gibbs measure at inverse temperature fl conditioned on their 
neighbors. Thus, if n is even, the updating rule is 

f exp [ -- ~r~'*Qi(gn--l) ] if i~]_ (+) 
p(a,,glff, 1)=~ 2coshf iQi (q ,_ l )  ' (5.2) 

6 ....... ~,~, if ieB_ (-) 

where 

Q.,i(t/) = - J  ~ q j - b  (5.3) 
j e  u(i)  

for U(i) the set of nearest neighbors of i. If n is odd, the updating rule is 
obtained by reversing the roles of H_ (+) and D_(). Then an easy calculation 
verifies that any Gibbs measure v (~ for the d-dimensional system with 
Hamiltonian (5.1) is invariant under this evolution. 

One could view the space-time histories of this process as spin con- 
figurations on 7/x ~_(o), but it is also natural to ignore the sites at which the 
spin is unchanged, and consider these histories to be defined on the lattice 

l_= [(27/)x ~ + ) ]  u [(2Z + 1) x l_ (-)]  c Na+t (5.4) 

where 27/and 27/+ 1 are the even and odd integers, respectively. For exam- 
ple, if ~_(0) is 7/ with D_ -+ the odd and even integers, then ~_ is the diamond 
lattice shown in Fig. 1. Similar examples are discussed in ref. 7; see also 

Fig. 1. 

TIME 

Space-time lattice with d =  1 for PCA defined by alternate updating of odd and even 
sites in/ / .  
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Example  5.2 below for a discussion of a par t icular  instance of this construc-  
t ion with d =  2. Note  that  in the case Q_(O~ = 2 of Fig. 1 we m a y  by a rota-  
t ion identify L with Z z, but  then the model  is distinguished f rom the ESM 
on Z 2 considered earlier by the fact that  the time associated with a site 
x =  ( i , j ) e Z  2 is t ( x ) = i +  j. 

The P C A  described above  can be viewed as an ESM on ~_ in a na tura l  
way (a formal  definition is given below). If  v ~~ is a Gibbs  measure  on I_ (~ 
for ~,~(o~, then the margina l  measures  v (+~ on a_ (+) are invar iant  under  two 
t ime steps of the PCA. Moreover ,  v (~ itself m a y  be identified with a 
measure  on spin configurat ions on two consecutive layers l_,,, and gives rise 
to a Gibbs  measure/~(0~ for the (d + 1)-dimensional  system on D_. 

We now introduce a general geomet ry  for the E S M - P C A  corre- 
spondence which includes the cons t ruc t ion  above.  Let  {k be a nondegenera te  
lattice in ~a+~, that  is, a discrete subset invar iant  under  some ( d + l ) -  
d imensional  g roup  of translations.  With  each site x ~ D_ we associate a t ime 
t(x) given by t ( x ) = x . e ,  where e e ~ + 1  is some fixed vector,  and we 
suppose that  t(x) assumes precisely all integer values: 

n e ~  n e Z  

(5.5) 

Finally, we suppose that  H_ is i nvanan t  under  t ranslat ion by noe for some 
(minimum,  posit ive) integer no. Thus,  1_ is fo rmed  by the periodic stacking 
of no space lattices n_o, ~-1,.-., ~,0-1- 

Write  ~ -- ( a ~ ) ~  L for a spin configurat ion on l_ and _an for its restric- 
tion to 1_,. In ana logy with (1.3), a P C A  on D_ is specified by transit ion 
probabil i t ies  

px(~xlcr_t(x~ ~)=�89 +oxhx(~r_,(x~_l)] (5.6) 

which we assume to be of finite range and t ranslat ion invariant;  in typical 
examples,  the Px are actually invaiant  under  some transit ive symmet ry  
group  of the lattice, so that  the model  is determined by P0. The transit ion 
to a Gibbs  system on 1_ is as in (1.10)-(1.11): 

W(a)= ~ Hx(a~,g,(~)_1) (5.7) 
X~:L 

with 

exp[  - Hx(ax, _~,(~)_ 1)] --- px(ax lift(x)- 1) (5.8) 

We will be interested in measures  v on {~,} which are invar iant  under  n o 
steps of the PCA. 
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Example 5.2, The Domany model. Domany (1) has studied the con- 
struction of Example 5.1 with D_ (~ the honeycomb lattice in R 2 and 0_ (-+1 the 
two triangular sublattices, and with zero magnetic field. The lattice 0_ is 
shown in Fig. 2; it is formed by stacking triangular plane lattices and, with 
rescaling of time, is isomorphic to the hexagonal close-packed (HCP) 
lattice in R 3. The three corners of each shaded triangle in Fig. 2 determine, 
up to noise, the spin at the apex of the tetrahedron whose base is that 
triangle. Equation (5.2) leads to 

ho07) = tanh @ j~v ~J ) (5.9) 

with U the set of three sites in D_ 1 closest to 0 (we take J =  1 for sim- 
plicity); all other hx are determined by translation invariance combined 
with invariance under the operation of translation of one unit in the time 
direction combined with a space reflection. The resulting ESM is itself an 

Fig. 2. HCP  lattice for PCA defined by alternate updating of sites on triangular sublattices 
of hexagonal lattice. Sites at the vertices of each shaded triangle influence the site at the apex 
of the corresponding tetrahedron; all sites at time t ~> - 3  which influence the origin are 
shown. 
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Ising model, with ferromagnetic couplings between lattice planes and 
antiferromagnetic nearest-neighbor couplings within the planes. Since the 
two-dimensional model is known to have a phase transition at some criti- 
cal value of/~, so does the ESM and hence also the PCA. We remark that 
it is easy to verify that the measures v (-+1 are Gibbs measures for a 
nearest-neighbor ferromagnetic Ising model on the triangular lattice. 

5.1. The Toom model 

We construct the Toom model on a lattice L = Z 3, but with time t(x) 
associated with site x defined by t(x)= - (Xl  +x2  + x3); that is, we take 
e =  - ( 1 ,  1, 1) above. The space lattices 1_ n are then triangular lattices, as in 
Example 5.2, but are arranged as follows: under projection perpendicular 
to the lattice planes, the sites of 1_ n + 1 coincide with the centers of alternate 
triangles in ~,, i.e., of those with some fixed orientation; the sites of L,+2 
coincide with the centers of the similarly oriented triangles in Ln + 1 and also 
with the centers of the oppositely oriented triangles in L,,; finally, 1_,+ 3 
coincides with 1_ n itself (so that no = 3). If the time axis is rescaled, 1_ 
becomes the face-centered-cubic (FCC) lattice. 1_ is shown in Fig. 3. 

We first define a deterministic Toom model. Transition probabilities 
are given by (5.6), with hx(r / ) -  ~bx(_r/), where 

~bo(_q)=sgn ( ~ _t/) (5.10) 
iE U0 

and U o -  {(1, 0, 0), (0, 1, 0), (0, 0, 1)} consists of the three corners of the 
triangle in 1_ 1 which lies directly above the origin. That is, by translation 
invariance, the spin at site x is determined by a majority vote of the spins 
at the corners of the triangle directly above. A stochastic Toom model is 
any (small) perturbation of this model, that is, a model on 1_ of the general 
class defined by (5.6) and satisfying 

Ilho(_t/) - ~bo(_q)ll < 2e (5.11) 

The evolution in such a stochastic model follows the deterministic rule at 
each site with probability (at least) 1 - e  and does something else with 
probability (at most) ~. (Toom's treatment in fact allows for even more 
general perturbations.) 

The deterministic dynamics clearly has ~r(x)-  +1 and a(x ) -  - 1  as 
invariant states. Moreover, these states are stable against finite excitations 
of spins of the opposite sign. In fact, such excitations shrink at a constant 
rate and hence disappear in finite time: the model is said to satisfy an 

822/59/1-2-10 
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O 
Fig. 3. FCC lattice for Toom model in symmetric presentation. Sites at the vertices of each 
shaded triangle influence the site at the apex of the corresponding tetrahedron; all sites at time 
t >~ - 3  which influence the origin are shown. 

eroder condition. This property is most easily seen for triangular excitations 
which at time zero have the form 

aiik=--I iff i,j,k>~-N, i+j+k=O (5.12) 

These excitations will have vanished by time t = N. Toom (9) has used this 
stability to show that the introduction of a small degree of noise does not 
remove the symmetry breaking, that is, if e is sufficiently small, the process 
still has (at least) two invariant states, in one of which most spins are + 1, 
in the other of which most are - 1 .  We will review this proof in the 
Appendix. 

We mention two specific possible choices of ho: 

(i) Bennett and Grinstein (19) study a particular choice of stochastic 
updating in which errors favoring up spins are made with a probability p, 
and errors favoring down spins with a probability q: 

~'(1 - 2p) ~bo(t/) if ~bo(~) < 0 (5.13) 
h~ = ((1 -- 2q) r if r > 0 
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The resulting ESM Hamiltonian 24 ~ is the sum of single-site energies 

Ho(ao, q_l)=-(fi~o+J)( ~ ~_~,j- I] ~ 1,j)-bao-7 (5.14) 
j ~  Uo j e  Uo 

where 
1 (1 -p ) (1  - q )  1 p(1 - q )  

fi = ~ log b = ~ log ' q(1 - p )  Pq (5.15) 
1, q ( 1 - q )  J 41ogpq(l_p)( 1 q) = ~ ,og ) -~  ~)-~,  7 = - 

We will refer to this as the BG model, and we summarize the description 
of its phase plane below. 

(ii) The geometry of one step of the Toom model is the same as that 
of one step of the Domany model of Example 5.2, that is, the updated spin 
at a site is determined (up to noise) by the spins at the corners of a triangle 
immediately above it. Moreover, the Domany updating rule (5.9) is in the 
Toom class. Using this updating rule on the Toom lattice therefore 
produces a PCA for which we know the invariant measures v--they are 
just the measures v (+) discussed for the Domany model, that is, Gibbs 
measures for the 2D Ising model at zero magnetic field, on the triangular 
lattice. The existence of a phase transition in this model therefore follows 
either from Toom's theorem or from the known existence of a phase 
transition for the two-dimensional model. The Toom model defined with 
this updating is obtained from the model of Domany by the substitution of 
the FCC for the HCP lattice, that is, simply by a change in the way the 
triangular lattice planes are stacked, but the dynamics of the two models 
will be quite different. We note two particular features of this difference. 
First, at zero temperature the state a x -  +1 is stable on the FCC lattice 
against any finite excitation, but this is not true on the HCP lattice. For  
example, consider an excitation at time t = - 3  for which three spins 
located at corners of an unshaded triangle in Figs. 2 and 3 have value - 1. 
Then one each lattice a triangle of spins will have value - 1  at t = -2 .  On 
the FCC lattice (Fig. 3) these will be located at corners of a shaded triangle 
and hence only the single spin directly below will have value - 1 at t = - 1; 
the excitation will disappear by time t = 0. On the HCP lattice (Fig. 2), 
however, the spins at time t = - 2  will again be at the corners of an 
unshaded triangle, so that the excitation will persist for all time. Second, we 
may modify the rule (5.9) to correspond to a nonzero magnetic field b on 
the honeycomb lattice: 

ho(q)= tanh fl (j~u tlj + b ) (5.16) 
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On the FCC lattice the resulting PCA still has two invariant states, by 
Toom's theorem, but only one state exists for the Ising model on the 
honeycomb lattice and hence for the PCA on the HCP lattice. 

We close this section with two remarks. First, the Toom model may 
be given an equivalent presentation on the conventional E 3 lattice (with an 
axis in the time direction) in which a site is updated according to the 
majority of spins among itself and its two neighbors to the north and east. 
Following Bennett and Grinstein, we will call this the north-east-center 
(NEC) presentation of the model, and refer to our original version as the 
symmetric presentation. Second, one may generalize the Toom model 
immediately to higher dimension; in space dimension d the deterministic 
rule for a site x is based on a vote of ( d+  1) sites at the previous time. It 
is easy to modify the proof of Toom's theorem to show nonergodicity for 
small perturbations of this dynamics, even if the deterministic rule is 
strongly biased in favor of, say, ~ = +1; it suffices to require that at least 
two + 1 votes are needed to produce a + 1 outcome. 

5.2. The Phase Plane for the BG Model  

The BG model is conveniently described in terms of the parameters 
p + q, the noise, and ( p -  q)/(p + q), the bias. The phase plane is shown in 
Fig. 4 (taken in part from ref. 19). As Bennett and Grinstein point out, 
although noise and bias are somewhat analogous to temperature and 
magnetic field, two phases persist even in the presence of bias; in an Ising 
model, on the other hand, a nonzero magnetic field produces a unique 

~.//,/' ~AN FIELD INTERFACE 
/ / , /  , , 

0 .1 .2 .3 NOISE .4 

Fig. 4. Phase plane for BG model. Dashed lines are correction to mean-field phase transition 
line from consideration of interface motion. 
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phase. This may be understood from the ESM point of view as follows: the 
ESM Hamiltonian (5.14) contains one-, two-, three-, and four-spin interac- 
tions, and generic perturbations in the space of these interactions [e.g., the 
addition of a magnetic field term b'o- o to (5.14)-1 would indeed produce a 
unique phase. The special perturbations corresponding to PCA evolutions, 
however, including more general ones than the BG class, leave the system 
on the two-phase surface in the space of ESM Hamiltonians. 

It appears, on the basis of the numerical simulations and some 
analytic evidence, (19'42) that the phase transition at zero bias ( p =  q) is a 
second-order transition, and that the transition at nonzero bias is first 
order. That is, when the phase transition line is approached at nonzero bias 
from within the two-phase region, the magnetization in the unfavored 
phase approaches a limit distinct from the magnetization in the favored 
phase; on the other hand, the favored phase appears to vary quite 
smoothly. Note in particular that when, say, the bias is 1 (i.e., q--0), one 
invariant state is known to have a x -  +1; this state certainly does not 
change as the noise is increased to shift the system across the phase 
transition line. 

The free energy is, as mentioned earlier, identically zero for any Gibbs 
state of the ESM; in particular, for both pure phases in the two-state region 
and for the single phase in the one-phase region. Bennett and Grinstein 
suggest that immediately to the left of the (true) phase transition curve in 
Fig. 4 there exists a metastable phase with a prevalence of spins of the 
"wrong" sign, and with a free energy increasing exponentially slowly from 
zero. The free energy will not be identically zero in the larger space of 
perturbed Hamiltonians for the ESM, and the magnetizations in the two 
phases will be expressible as left and right derivatives of the free energy 
with respect to an external magnetic field in this space. 

One characteristic feature of the evolution observed in the simulations 
of the NEC presentation is that the typical excitations of one phase are 
triangular islands of the other phase, of the form 

{(i,j)6zzti>~a,j>~b, i+j<~c} (5.17) 

In the deterministic model, the southern and western boundaries of these 
islands are stationary, and the northeast boundary moves southwest with 
unit speed, so that the island disappears in a time proportional to its linear 
size. As noise is introduced, the southern and western boundaries acquire 
a drift to the south and west, respectively, and the speed of the northeast 
boundary decreases; islands shrink more slowly. Suppose that we continue 
to increase the noise and that a bias is present, say favoring + 1 spins. 
Then - 1  islands in the + 1 phase will continue to shrink and disappear, 
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but the transition to a one-phase region will be signaled by a change in the 
behavior of + 1 islands in the - 1  phase: sufficiently large islands of this 
type will now grow. In the next section we present a mean field model 
which captures some of these features. 

5.3. Mean  Field Approx imat ions  to the BG Model  

In this section we discuss mean field approximations to the dynamics 
of the BG model. We continue to work in the NEC presentation. 

Bennett and Grinstein (19) propose a dynamic mean field approxima- 
tion in which sites at time n e Z are assumed to have a Bernoulli distribu- 
tion with magnetization m~ ; that is, each spin is independently distributed 
with Prob[o-n,i= + 1 ] = ( 1  +m,) /2 .  The dynamics is then given by the 
deterministic rule 

m~+~ = - 1  + p ( 1 - p . ) +  ( l - q ) ( 1  + p . )  

= (p - q) + 1(1 -- p -- q) m~(3 - m. a) (5.18) 

where (1 + P n ) =  [(1 +_mj  3 + 3 ( l + m n )  2 (1-T-mn)]/4 is twice the proba- 
bility that a majority of spins in the NEC neighborhood of a site are _+ 1. 
Equation (5.18) corresponds to a CA in d = 0  with continuous spin 
variable m e  [ - -1 ,  1]. If we look for stationary solutions m n - m  of this 
dynamics,we find two distinct regimes: for p, q small there is a two-phase 
region in which there exist three stationary solutions m_ < mo < m+,  with 
m+ stable and mo unstable; for larger p, q there is one-phase region corre- 
sponding to a single stationary solution. The phase transition curve is 
easily calculated explicitly, and the resulting phase plane is qualitatively 
similar to the true phase plane as determined by simulation (see Fig. 4). 

In order to model the evolution of triangular excitations as observed 
in the simulations, we introduce a mean field model which can accom- 
modate interfaces between distinct phases. Consider first a vertical 
interface. We suppose that the spins within the kth column at time n are 
independently distributed with magnetization m,,,k, and replace (5.18) by 

m . + l , k =  - 1  + p ( 1 - p . , k ) +  ( l - q ) ( 1  +p. ,~)  

= ( p _ q ) + l ( 1  p q ) [ 2 m . k + r n . , ~ + l (  1 2 - - , - m . , ~ ) ]  ( 5 . 1 9 )  

where 

(1 _+ P. ,k)= �88 _+ m.,k) 2 (1 _ m..k +, ) 

+ 2(1 ~ m.,~)(1 ___ m.,~)(1 -r ran, k+ 1) 

+ (1 ~m. ,k+l) (1  +m.,k)  2] (5.20) 
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is again twice the probability of a majority of + 1 spins in the NEC 
neighborhood. This is now a CA in d =  1. Clearly (5.19) has the same 
stationary solutions mn, k = m as (5.18). Computationally,  when p, q are in 
the two-phase region of the uniform mean field model, we also observe 
solutions corresponding to interfaces which move to the left (west): 

m,,k = f +  (k + v + n) (5.21) 

where f , ,  r = _+1, is a monotonic function satisfying l imx~ +_:~ f~(x) =m+,, 
and v~ = v~(p, q) is the interface velocity, observed to satisfy 0 ~< vT < 1. 

The analysis of horizontal interfaces (which move south) is the same. 
For diagonal interfaces we assume that the magnetization at site (i, j ) e  Z 2 
at time n is rh,,,;+ j. The dynamics of rh is easily written down and is similar 
to (5.19). Moreover, m n , ~ = ~ , _ ( , + k )  obeys (5.19), so that since a vertical 
interface with an m+ state on the east moves with velocity v+, a diagonal 
interface with an m_ state on the northeast moves southwest with velocity 
1 - v + .  

Now consider a triangular island of the m+ state within the m_ state. 
If we ignore effects due to the corners of the triangle and consider the sides 
as interfaces which move as above, we see that the triangle will shrink and 
eventually disappear if v+ < 1/3, but will grow if v+ > 1/3. Thus, v_+ < 1/3 
is the condition for stability of the m = phase in this model. This condition 
modifies the phase diagram for the mean field model by shifting the 
transition line between the one- and two-phase regions toward lower noise, 
when there is significant bias toward plus or minus states. This shift has the 
effect of significantly improving the agreement with the true phase diagram 
(see Fig. 4). 

6. R E M A R K S  A N D  O P E N  P R O B L E M S  

6.1. Re la t ion  of  P C A t o  E S M  w i t h  Q u e n c h e d  Disorder  

We consider here a PCA parametrized as in (1.6), that is, so that 

a,,i= M~.i(y,, 1) with probability q~, a = 1 ..... m (6.1) 

Let us introduce independent and identically distributed random variables 
{con, i} taking m distinct values with probabilities q,;  we might choose, for 
example, 

Prob[con, i = c~] = q~, c~ = 1 ..... m (6.2) 
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Then the time evolution (6.1) may be written 

~r.,~= ~ 6 ....... M~,i(a ._l)  

Consider now the random Hamiltonian on 7/d+~ 

(6.3) 

~ ( _ a , O ) = - 2  ~ 6 ........ an,,M~,,(_a,_l) (6.4) 
n,i o:--1 

For a fixed sample point _co and initial condition a N the energy (6.4) in 
the domain I ) , > - N  7/~ intuitively is minimized by choosing a to be the 
solution of (6.3). More precisely, this is true in any domain A of the special 
type mentioned in the introduction (see ref. 6) with boundary condition 
a _ u  on the top and free boundary condition elsewhere; in fact, the 
ground-state energy in such a region is just - [A[ .  That is, the ground state 
of the ESM Hamiltonian J(((., ~)  is a CA trajectory. We thus establish a 
correspondence between the PCA and a quenched random ESM at zero 
temperature. Note, however, that this ESM is free of frustration: for any 
given ~o the ground state with suitable boundary conditions is unique and 
minimizes each single-site Hamiltonian separately. 

E x a m p l e  6.1. Majority rule in one dimenson. The model of (1.14) 
may be written in the form (1.6) as 

ho(t/) = (1 - 2 e )  M0(_q) + eMl(_r/) + eM_ 1(~) (6.5) 

where Mo(_r/)=sgn(r/ ~+qo+r/1)  and M + l ( t / ) = + l ,  leading to the 
random Hamiltonian 

~(_~, _b) 

= - ~ [ ( 1 - l b . , i L ) c r . , i s g n ( G . _ l , i  1 + o .  x, i+a.-_l , i+l)-b. , ia . , , ]  
n,i  

where now 

1 

b. , i= - 1 

0 

The entropy per site 
Hamiltonian (6.4) is given by 

s = - ~ q~ log q~ 

with probability e 

with probability e 

with probability 1 - 2e 

associated with the randomness 

(6.6) 

(6.7) 

in the 

(6.8) 
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In general, there are many possible decompositions (1.6) for a given PCA, 
and the infimum of $(_c/) over all such decompositions is the minimum 
possible entropy for an equivalent random Hamiltonian. At zero tem- 
perature g is the entropy per site for the joint distribution of the variables 

and ~, and hence is an upper bound for the entropy per site g(#v) of the 
ESM in state #v [see (1.26)]. In fact, the entropy (6.8) is greater than or 
equal to the PCA noise (1.25). To see this, we define for given_r/ 

q_+= ~ q~ (6.9) 
~eQ+(p 

where Q + (_t/) = { c~ I M~(_t/) = _+ 1 }, so that So(9) = - q  + log q + - q_ log q_ ,  
and then observe by the convexity of the logarithm that 

- 2 q ~ l o g q ~ > ~ - l o g (  E q 2 ] > ~ - l ~  (6.10) 
~o+_ q+- ~o_• q+-/ - 

so that ~(q)~>s0(_q) for all 9' 
There are other ways to identify PCA with random ESM. For 

example, the finite-temperature Gibbs measure 

~t~.0(dg ) = Z  1 e x p [ - / ~ ( _ a ,  b)] po(d_a) (6.11) 

where Po is the a priori  Bernoulli measure giving all spin configurations 
equal weight and Jtqg, _b) is given by (6.6), corresponds to a PCA in which 
the evolution (6.1) is followed with probability 1 - 2 e  and a random choice 
of _+ 1 is made with probability 2e, where e = (e 2/~ + 1 ) -  1. More generally, 
if h is a convex combination h~ = zm= 1 q~h:: of h-functions for other PCA, 
then we may think of the ESM as determined by a random Hamiltonian 
in which the Hamiltonian H:~ corresponding to h ~ acts at site x with 
probability q~, all choices being independent. These identifications may 
make it possible to bring the methods of random ESM to bear on the 
study of PCAs. 

6.2. Stability of CA Trajectories 

We consider here PCAs which are nearly deterministic, that is, which 
satisfy 

Ilho - Moll < 2~ (6.12) 

for some Mo(9 )  with IMo(9)! : 1 and some small e > 0 .  We will call a 
trajectory _a for the deterministic CA determined by M o  stable if PCA 
histories which agree with g at some initial time remain close for all time; 
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specifically, if for any 6 > 0 there is an e > 0 such that if 5 is a history for 
a PCA satisfying (6.12), with g - N  =-~--N, then Prob[ffn, i r  < 6 for all 
n, i with n > - N .  If at least two trajectories for the CA are stable, then the 
PCA must have two low-noise phases, so that it is natural to base a 
low-noise analysis of PCA on the study of the CA trajectories. The corre- 
sponding study of low-temperature phases of an ESM as perturbations of 
ground states gives rise to the Pirogov-Sinai theory. ~43) There is a direct 
connection between these ideas: for the simplest perturbation [see (1.28)], 

ho(_r/) = Mo(_r/)(l - 2e) (6.13) 

the trajectories of the CA are ground states for the corresponding ESM, 
which has [see (1.14)], 

Ho(ao,  tl) = - f l a o M o ( t l  ) - const, 
1 1 1 - e  

f l = ~  og e (6.14) 

In general, when (6.12) is satisfied with e sufficiently small, the same 
conclusion holds in finite volumes whose maximum size may depend on e. 

Stability of CA trajectories is closely related to their stability against 
finite perturbations (see Section 5), which we will call weak  stability.  
Specifically, a CA trajectory _a is weakly stable if, whenever _~ is another 
trajectory which agrees with _a at some time - N  except at a finite number 
of sites, then ~ and ~ are identical after some time N'~> - N .  Toom (9) has 
shown that for attractive CAs (see Section 3) in which the function Mo is 
not constant, weak stability of one of the trajectories a+ defined by 
a • = +1 implies its stability in any PCA satisfying (6.12) with sufficiently 

n ,  / - -  - -  

small e. (Toom uses the term attractivity for what we have called weak 
stability.) Moreover, he has proved a partial converse: under the same 
hypotheses, lack of weak stability for one of _a • implies that, for any ~ > 0, 
that trajectory is not stable for some PCA satisfying (6.12). 

In the ESM picture, in which a CA trajectory is the ground state of 
an appropriate finite-range Hamiltonian, weak stability implies that the 
energy of an excitation over a region A goes to infinity as JAJ does. This 
is weaker than the Peierls condition, which plays a central role in the 
Pirogov-Sinai theory and requires that inserting a ground state in a 
volume A into another ground state costs an energy proportional to the 
size of the boundary of A. Weak stability is more closely related to the 
condition of regularity as introduced by Slawny (44) and Bricmont and 
Slawny(45): an ESM is regular if the energy of an excitation relative to the 
corresponding ground state tends to infinity with the size of the excitation. 
It is not clear at present, however, how to apply these low-temperature 
theories for the ESM to the problem of phase transitions in the PCA. 
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The simplest candidates for low-temperature phases of a PCA are 
states with a preponderance of spins of one sign; by Toom's theorem, the 
existence of such phases for perturbations of attractive CA follows from the 
weak stability of the CA trajectories g-+. Moreover, by the partial converse, 
results on the lack of weak stability for these trajectories in one dimension 
thus give some support to the positive rates conjecture. We give two such 
results. 

The first of these is a simple observation. We say that a d =  1 CA 
preserves interfaces if its evolution leaves invariant the configurations n+ 
defined by 

zc~={  -+IT1 if if i>~0i<0 (6.15) 

Then the configurations g -+ cannot be weakly stable for a d =  1 finite-range 
CA which preserves interfaces, since the insertion of a sufficiently large 
interval of spins of the opposite sign will necessarily lead to an invariant 
configuration. 

The second result follows from a criterion for weak stability due to 
Toom. We call a set A ~ gall a plus set if having q, = 1 for all i ~ A  ensures 
that Mo(r/)= 1; A is minimal if it contains no other plus sets. Minimal 
minus sets are defined similarly. We now identify 7?a_1 with 7?d= ~d in the 
natural way and for any A = Za_l we write Conv(A) for the convex hull of 
A in 0U. Then Toom proves the following criteria: for attractive CA, the 
trajectory q+ (respectively _a ) is weakly stable if and only if 

("] Cony(A)= ~ (6.16) 

where the intersection is over all minimal plus (respectively minus) sets A. 
Note that each plus set A must intersect each minus set B, since otherwise 
a contradiction would follow from consideration of a configuration _q with 
qi= +1 on A, r/i= - 1  on B. 

E xa mpl e  6.2. For the deterministic one-dimensional majority vote 
model (Example 1.1 with 5= 0), or for the deterministic Toom model, a 
minimal plus set or a minimal minus set consists of any two of the three 
points in 7/d 1 which determine ~0,0- The sets Conv(A) are then line 
segments joining the pairs of points. Condition (6.16) clearly holds in the 
second case and not in the first. 

Toom's criterion implies immediately our second negative result on 
weak stability in one dimension: 

Proposition. There does not exist an attractive CA in dimension 
d =  1 for which both ~ + and a are weakly stable. 
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Proof. If o- + is weakly stable, then there must exist two minimal plus 
sets, say AI and A2, for which Cony(A1) and Cony(A2) are separated by 
some open interval L But all minimal minus sets must intersect both A 1 

and A2 and hence their convex hulls must contain I, so that a is not 
weakly stable. | 

6.3. Nonlocal Updat ing 

The PCA-ESM correspondence extends to those PCAs for which the 
function h 0 appearing in (1.3) is not of finite range. It suffices to require, 
for example, that the variation Aho(i ) [-see (4.11)] be exponentially small in. 
the distance Iil; the corresponding ESM will then have an exponentially 
decreasing interaction potential. Aside from its intrinsic interest, this 
generalization would be relevant for the extension of our discussion to 
Markov processes which are discretizations of continuous-time processes 
(interacting particle systems) obtained by observing the processes only at 
integer times. In the continuous-time system (except in trivial cases), and 
hence in discrete time, the distribution of the spin at site (t, i) will always 
depend on the spin configuration at time t = 0 on all of 2 ~. Chapter 1 of 
Liggett (13) gives estimates on this dependence which yield the desired 
exponential decrease in the discretized model. 

The correspondence also extends to PCA in which the updating at 
time n depends on spins at all times previous to n, or, more generally, in 
which the updating of o-n,i depends on all spins in the lexicographic past of 
(n, i). Again, some exponential decrease in the interaction strength is 
required. See ref. 6 for further discussion. A potentially interesting example 
of a PCA depending on a lexicographic past would be obtained by adding 
noise to the parity rule filter automata, (46~ a CA which has been proved to 
exhibit solitonlike behavior. (47~ 

6.4. M o r e  Inequali t ies 

As observed in Section 3, positive dynamics for a PCA does not give 
rise to ferromagnetic couplings in the ESM [-there are some trivial excep- 
tions when log Q(_t/) is independent of_q]. Correlations are nevertheless 
positive because we may reorganize the PCA measure into the form (3.6). 
We now observe that one may write any Gibbs measure in a volume A, not 
just those for ESM corresponding to PCAs, in the form 

#A(da)= KAx~A ~ \1+ e=A ~ eB, x~ej po(da) (6.17) 
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where K A is a normalization constant and P0 is the a priori measure giving 
all spin configurations equal weight, and there is no restriction on the sets 
B in the sum; ]~A must of course be nonnegative. It is clear that we will 
have positive correlations when all p~)~ are nonnegative. This construction 
is related to that of Fernandez and Slawny (28) in their extension of GKS 
inequalities to systems with some nonferromagnetic interactions. The 
connection is via the remark after (1.20) that antiferromagnetic terms from 
log[2 cosh Qo(_r/)] contain only bonds which are symmetric differences of 
bonds in the ferromagnetic Q0(g). 

To illustrate the above construction, let us again consider the example 
discussed immediately after (5.4) on the lattice of Fig. 1. This ESM may be 
thought of as an Ising system on a square lattice 22 with nearest-neighbor 
ferromagnetic coupling J and next-nearest-neighbor antiferromagnetic 
coupling - J ' = - � 8 9  between spins at sites ( i , j + l )  and 
( i+  1, j). [In the PCA language, time is now increasing along diagonals 
running from ( i+  1, j +  1) to (i, j) .]  We now introduce a m e a s u r e  f i A  in a 
periodic square box A, of the form 

~A ~ KA H 1 1 2 ~FuFup(da) (6.18) 
(i,,])eA 

where 

nl 

' tanh(2p(l'~)J) + ae+ ,,,)] F;~.(g) = [ I  [1 + ~ cru(a/,,+, 
a = l  

n2 

gZ(ff) = 1-[ [1 + �89 tanh(2p(2'~)J) {Tij(ai, j +  1 ~-(T i I,j)] 
a = l  

(6.19) 

n2 p(2,a) with ~]1=~ p(1 , . )+Z~= 1 = 1 and all p0,a~ nonnegative. The corre- 
sponding ESM, which of course does not correspond to a PCA, still has 
nearest-neighbor couplings J, but now has next-nearest-neighbor couplings 
-J ' l  and - 4  on the ( i , j+  1)-( i+  1, j )  and ( i , j+  1 ) - ( i -  1, j)  diagonals, 
respectively, where 

nt 

J~' = ~ �89 log cosh 2p(i'a)J (6.20) 
a = l  

It is easy to verify that by choosing the ni and p(i.a/appropriately one may 
obtain any diagonal antiferromagnetic couplings J'l, J ;  satisfying 

cosh l(exp 2J'1) + cosh-  l(exp 2J2) ~< 2J (6.21) 

By the above argument, all of these ESM have positive correlations. 
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6.5. Linear Dynamics 

It has been remarked by various authors (see refs. 7 and 8 and referen- 
ces therein) that the PCA and corresponding ESM are "exactly solvable" 
when ho(3) has the form 

ho(_q) = ?o + ~ fit/i (6.22) 
i e U  

such PCA are called affine, or linear if ?o = 0. In this case the inequality in 
(3.4) becomes an equality and one can solve explicitly for the correlation 
functions of the ESM. ~8) In particular, there will be no phase transition 
when Iho(r/)l < 1, since for (6.22) this condition implies I~ol +52 I~il < 1, so 
that (4.1) is always satisfied. Note that if Qo(r/)= - J o - J l q l  or Qo(_r/)= 
- J l t t l - J 2 q 2 ,  then it follows from (1.22) that the PCA is affine or linear, 
respectively. 

6.6. Open Problems 

In this section we summarize several open problems involving the 
PCA ESM correspondence, including some which have been mentioned 
earlier. 

1. We expect that increasing the noise in a PCA will decrease its 
ability to remember its initial configuration, but in exactly what sense this 
is true is not clear at present. To formulate a precise question, we consider 
a PCA of the form 

ho(r/) = (1 - 2e) M0(_q ) (6.23) 

where 0 ~< e ~< 1/2, M o is an increasing function (so that the PCA is attrac- 
tive), and IMol = 1. Examples are the majority vote model of (1.13) and the 
BG model with p = q  = e. This simple PCA follows the deterministic rule 
determined by Mo with probability 1 -  2e and makes an independent 
choice of + 1 or - 1 with probability e for each; e is thus a measure of the 
noise. Suppose that the PCA is started at time - N  with the configuration 
in which all spins are + 1, that is, in the initial measure p = 6+ discussed 
at the end of Section 3, and that C is a subset of Z a+ 1 in the future of - -N  
with ( a c )  its expectation in the m e a s u r e  ~O N. We ask: Does ( a c ) > / 0  
hold, as suggested by attractivity? Is (O-c) a decreasing function o f t ?  

The same questions could be posed for the model of Example 5.2 or 
that discussed in connection with Fig. 1, in which /~ is a measure of the 
noise. Here we know that v = limn~ ~ 6+ P" is the measure for an Ising 
model and has positive correlations, but we cannot show that the 
equal-time correlations at finite times are positive. 
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2. Consider an ESM arising from a PCA, i.e., with Hamiltonian 
given by (1.10)-(1.11). Are all Gibbs measures Markov chain measures 
for the PCA? The question has been answered affirmatively for 
translation-invariant and periodic Gibbs states in ref. 6. 

3. Let v be a measure on 7/J which is invariant for some PCA. Under 
what conditions is v Gibbsian? Sufficient conditions are given in Section 4; 
basically, it suffices that the corresponding ESM exist and be in the 
high-temperature Dobrushin-Shlosman regime in which the Gibbs state 
is unique. In the low-temperature regime, on the other hand, the 
non-Gibbsian nature of v has been established for certain dynamics (see 
refs. 25 and 26 for the voter model and refs. 48 and 49 for a related ques- 
tion). The question remains open for the regime in which one of the 
high-noise conditions (4.1) or (4.3) of Chapter 4, but not the Dobrushin-  
Shlosman condition, is satisfied, and for most models at low or inter- 
mediate temperature. We remark that in the continuous-time case, in which 
there is no correspondence with an ESM, the Gibbsian nature of the 
stationary measure v is entirely open. 

4. Dobrushin and Shlosman have constructed a family of conditions 
Cv on a general ESM, where V c  Z d+l is any finite volume, such that the 
Gibbs state is unique if and only if Cv holds for some volume V. The 
criterion is in principle able to locate the phase-transition threshold with 
arbitrary accuracy. Cv is satisfied if the Gibbs measure in V is only weakly 
influenced by the variation of boundary conditions, that is, of spins outside 
V. We observed in Section 4 that our Condition 2 was a less restrictive 
form of the criterion C{0)--less restrictive because we need consider only 
variations of the spin configuration in the past of 0. We ask: Can one find 
similarly less restrictive conditions C'v which characterize completely the 
uniqueness region for the PCA, but which involve only the dependence on 
spins in the past of V, that is, which are expressed in terms of the PCA 
dynamics? 

APPENDIX  A. T O O M ' S  T H E O R E M  

In this Appendix we discuss the Toom model in the symmetric presen- 
tation, that is, on the lattice n_ = Z 3 with t(x)= -(xl +x2 + x3). We con- 
sider a PCA with transition probabilities satisfying (5.11), so that, for any 
site x s l_, 

Prob[rr~ r ~bx(g,(~)_ 1)3 < e (A.1) 

Let 5+ be the single-time measure concentrated on the configuration 
e x -  +1, let # N~]~No+ be the space-time measure on {xsD_tt(x)>>, -N} 
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generated by taking 6+ as initial condition at time - N ,  and let v be the 
invariant measure v = lim n ~ ~ ~ + P~. Our goal is to prove Toom's theorem 
on the existence of two stationary states. 

T h e o r e m  A.1. For sufficiently small e > 0  there exists a constant 
c < 1/2 such that 

g-m({cro = -1})~<c  (A.2) 

for all N > 0 ,  and hence v({a0= -1})~<c.  The same conclusion holds if 
+ 1 and - 1 are interchanged. 

We discuss the proof in several stages, moving from its general struc- 
ture as a Peierls argument to specific details of the contours (here graphs) 
which are needed. We remark also that a new and quite simple proof of the 
result has recently been given by Gray and Bramson. (5~ 

A I .  The Peierls A r g u m e n t  

In the variant of the Peierls argument used by Toom, the role nor- 
mally played by contours is taken by certain graphs. Note that although 
the theorem may be regarded as asserting the existence of a phase transi- 
tion in a three-dimensional Hamiltonian lattice system, the "contours" are 
nevertheless one-dimensional objects. In this section we give a minimal 
description of the graphs involved, specifying only the information needed 
to understand how the basic Peierls estimate works. 

Let g be a configuration with % =  -1 .  We may (and usually will) 
specify this configuration by giving the set X=X(~)  = {x~ ~_lax=-1}. 
Define 

f(={x~Xlcrx~Ox(g~(x~ 1)} (A.3) 

Sites in J( are those sites of X at which we know that the deterministic rule 
has not been followed; we say that an error has occurred and call the sites 
in X error sites. 

Given X (or equivalently g), we will shortly define a (finite) graph 
G = G(X). [The rules we will give do not specify G(X) uniquely, but we will 
assume that appropriate choices have been made for each X so that G(X) 
is well defined.] G has vertex set V c c X, edge set EG, and distinguished 
vertex subset P c =  VGc~2. These graphs satisfy two key properties, 
uniformly in N. First, the number of possible graphs grows at worst 
exponentially in the number of edges: 

r {GI IEGI = m }1 ~< (48) 2m (A.4) 
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Second, the number of edges in a graph cannot be too large compared to 
the number of vertices which are error sites: 

IV~l = iv~ n ~1 ~ �88 + 1 (A.5) 

If we assume that graphs can be defined satisfying these conditions, 
then the theorem follows immediately from (A.1) and the independence of 
updating at each site: 

P r o b [ ~ o = - 1 ] =  ~ ~ Prob[G(X(g))=G] 
m~-O {GIIE~I=m} 

~< ~] ~ Prob[An error occurs at each x e VG] 
m G 

~< ~ (48)2m e(m/4)+ 1 (A.6) 
m 

and this sum is strictly less than 1/2 for e sufficiently small. 

A2. The  Toorn Graphs  

In this section we describe further the graphs introduced above, by 
listing a series of seven properties which they possess. The construction of 
the graphs will be described in the next section. We need some preliminary 
notation. 

For x ~ X we let U(x) be the set of sites directly responsible under the 
deterministic rule for the fact that ax = -1 ;  of course, no site is responsible 
if x is an error site: 

~(x) = f ~  if x e 2 -  
(A.7) 

[ Uo + x]  c~ X otherwise 

Further, for A c X we let ~'(A) be the set of sites directly responsible for 
A, and W(A) be the set of all sites directly or indirectly responsible for A: 

~'~ = A 

U I ( A ) -  ~-(A)= U ~'(x) 
x E A  

~("~(A)= ~(D ~n "(A)) 

W(A)= U U(")(A) 
n > ~ 0  

(A.8) 

We write Y= W({0}) and I~= Yc~ )(, and will construct G so that V G c Y. 

822/59/1~2-II 
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The characterizing properties of the Toom graphs are as follows. 

P1. Each graph G = G(X) is connected, and the origin belongs to V c. 

P2. There are two types of edges in G. Timelike edges join two 
nearest-neighbor sites in Q_; the times associated with these sites necessarily 
differ by one. Spacelike edges join nearest-neighbor sites within a fixed-time 
triangular lattice [ , ;  these are next-nearest-neighbor sites in 0_. (Toom calls 
timelike and spacelike edges arrows and forks,  respectively.) More than one 
timelike edge can join the same pair of sites. 

P3. The edges of G are oriented, so that we may define an incidence 
matrix e: for x E V6 and e e EG, 

1 if e is oriented into x 

~xe = - 1 if e is oriented out o fx  (A.9) 

0 otherwise 

P4. Each edge e carries an index k(e) equal to 1, 2, or 3, and a 
corresponding current Je E 7 /3 ,  depending only on k(e): 

i 2 , - 1 ,  - 1 )  if k(e) = 1 
je = 1, 2, --1) if k(e) = 2 (A.10) 

1, - 1 , 2 )  if k ( e )=  3 

P5. Timelike edges are restricted in two ways: they are always 
oriented in the direction of decreasing time, and the index k = k(e) must be 
such that the kth component of the lattice site does not change along e. 
That is, if in general we write ~ e = Z x  Xexe for the displacement along 
edge e, then ~e "Je = 1 for timelike edges. 

P6. Current is conserved at each vertex x E VG: ~e~xeJe=O. 
Geometrically, this means that the edges incident on x may be sorted into 
pairs of edges with the same index, one entering and one leaving x, and 
triplets of edges with distinct indices, all entering or all leaving x. 

P7. The number s of spacelike edges in G satisfies s = F VG] - 1. 

Properties P1-P7 imply (A.4) and (A.5). To verify (A.4), note that in 
any connected graph G there exists a closed walk which traverses each edge 
precisely twice (this is just an Euler path in a new graph obtained by 
doubling each edge of G). We may estimate the total number of graphs by 
estimating the number of walks consistent with P1-P7. Begin the walk at 
the origin and note that at each step there are at most 48 choices: we may 
go in any of six spacelike directions, and for each direction choose between 
two orientations and among three indices, or we may go in any of six 
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timelike directions, and for each direction choose between two indices. 
Thus, the total number  of walks for graphs with ]EGI = m is at most  (48) 2m. 

Equation (A.5) follows from current conservation (P6): since 
3e "Je/> --3 for e spacelike, 

0 =  2 Z x.(axj~)  
x e  V a e e E  a 

-- E 
e ~  EG 

/> ~ ( 1 ) +  ~ ( - 3 )  
e timelike e spacehke 

/> IEGI - 4s 

= IEGI - 4(f t~cl - 1) (A.11) 

A3. Const ruc t ion  of  Graphs 

In this section we construct, for each configuration X, a graph G 
satisfying P1-P7 above. 

The first step is to partition Y into equivalence classes which we call 
clusters. For n~>0 let Y n = { x e Y I t ( x ) - - - n } ;  each cluster is wholly 
contained in some Yn. The equivalence relation on Yn is generated by an 
adjacency relation: for x, y e yn, 

x, y adjacent ~ W(x) c~ W(y) v~ ~ (A.12) 

If we regard Yn as a graph under this relation, then the clusters are simply 
the connected components of the graph; more explicitly, x and y belong to 
the same cluster if and only if there is a sequence x =  x 0, xl ..... xk = y of 
sites in Yn with W(xk)c~ W(xk+ 1) :~  ~ "  Note that {0} is the unique cluster 
in Yo- 

A cluster B c Yn+l will be called a parent of a cluster A c  Y~ if 
B c~ U-(A) ~ ~Z ~. We claim that no such B can be the parent of distinct 
clusters A and A'. Otherwise, there would exist a e A, a '  e A', and b, b' e B 
with b e  U'(a) and b ' e  U'(a'), and a chain b=bl ,  b2 ..... bm=b' with bieB. 
We may suppose that (for given B) the clusters A, A' and the elements 
bl,..., b m are chosen to make m as small as possible. Because 
bm 1 ~ Y= W(0), however, there must exist an a" e Yn with b m 1 e U(a"); 
since a"eA" for some cluster A " c  Yn, replacing A' by A", a '  by a", and 
b' by b,, 1 leads to a chain with a smaller value of m. 

For  a cluster A c Y, we define a graph H(A) whose vertices are the 
parents of A; edges in H(A) will be called links to distinguish them from 
edges in G. Parents B and B' are joined by a link in H(A) if U(a)c~ B r 
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and U(a) c~ B' ~ ~ for some a e A. The fact that A is a cluster implies that 
H(A) is connected. For, if B and B' are parents of A, there exist a, a' ~ A 
with U(a) c~ B r Zf and ~s c~ B' r ~ ,  a chain a = al,  a2 ..... am = a' with 
W ( a k ) c ~ W ( a k + l ) r  and hence elements b'ks~Y(ak), b k + l e U ( a k + l )  
with W(b'k)c~ W(bk+ 1)r  ~ .  If B~ (k-- 1,..., m -  1) is the cluster containing 
b2 and bk+ 1, and Bo = B, Bm= B', then for each k, Bk and Bk+l either 
coincide or are adjacent in H(A); thus, there is a ath from B to B' in H(A). 

We are now ready to define the graph G(X). We will construct G 
inductively, defining Go, G1,... and setting G- -U n  Gn. The graph G, will 
consist of that portion of G lying at time - n  or later, that is, Van is equal 
to V G c~ Um ~ n Ym and EG, consists of all edges of G for which the ends x 
and y both lie in Um~n Ym" Suppose for the moment that we have 
constructed Gn. If G, intersects a cluster A c Yn then we will say that A is 
relevant. We further classify relevant clusters by noting that, if x e Y~ ~ I 7, 
then {x} is a cluster; we call {x} terminal. Relevant clusters not of this 
form are active. 

Each Gn will satisfy properties P2 P5 above and will satisfy modified 
versions of P1, P6, and P7 as follows. 

PI ' .  The graph obtained from G~ by contracting each relevant cluster 
A c Yn to a point is connected, and the origin belongs to VG,. 

P6'. Current is conserved at each vertex x of G, for which t(x) > -n .  
Current may not be conserved at vertices in Va. c~ Y~, but is conserved for 
clusters: for any cluster A ~ Y, ,  Zx~A ~esEGn O~xeJe = 0. In fact, for n > 0 we 
will make an even more restrictive assumption: if A ~ Y, is a cluster, then 
one of the following cases holds. 

(i) Precisely one edge of G~ enters A, and precisely one edge, with 
the same index, leaves A. We call A a biped. 

(ii) Precisely three edges of Gn, with distinct indices, enter vertices of 
A, and no edges leave A. We call A a triped. 

The vertices of A on which any of these edges are incident are not 
necessarily distinct. 

P7'. Let s,  be the number of spacelike edges in G,, let 12G, = Va,, c~ J(, 
and let c, be the number of active clusters A ~ Y,. Then 

s~ = c .  + I VGol - 1 (A.13) 

We begin the induction by defining Go to be the trivial graph with ver- 
tex set {0} and with no edges. PI ' ,  P2-P5, and P6' are trivially satisfied. 
To check P7', note that So=0  and t h a t c o = 0 ,  I Vc01 = 1 if {0} is terminal 
(i.e., lies in Y), Co = 1, I I?G01 = 0  if {0} is active. 



Probabilistic Cellular Automata 163 

Now assume inductively that we have defined Gn. If every cluster in Gn 
is terminal, i.e., consists of a single vertex in I~, then the construction 
terminates with G = Gn. This must happen for some n less than - N ;  when 
it does, PI ' ,  P6', and P7' become P1, P6, and P7, finishing the proof. If, 
alternatively, Gn contains at least one active cluster, then for each such 
cluster A c Yn we will construct, according to steps 1 and 2 below, the 
portion of Gn+l which lies above A, i.e., in ~'(A). The induction step is 
finished when this construction has been carried out for each active cluster. 

Thus, let us fix an active cluster A of Gn. We carry out our construc- 
tion as follows. 

Step 1. Add to G,, a total of three timelike edges, carrying distinct 
nonzero indices, each joining some vertex a e A c~ Gn to a vertex in U-(a), 
and also add the vertices of Yn+ 1 which are the endpoints of these edges. 
If n = 0, the new edges are incident on the unique vertex 0 of Go. If n > 0, 
the new edges are incident on vertices a of A which are in VG,, that is, on 
vertices on which edges of G,, are already incident, and are chosen so that, 
in the new graph, current conservation is satisfied at each vertex of A. The 
procedure to do so depends on which of the alternatives assumed in P6' 
holds, that is, on whether A is a biped, with legs having some index k, or 
a tripe& In the first case we add one timelike edge, of index k, to the vertex 
at which the edge of Gn enters, and two edges, of distinct indices not equal 
to k, to the vertex which the edge of Gn leaves (these vertices may coincide). 
In the second case we add one edge to each vertex at which an edge of G~ 
enters, with the index of the entering edge. 

To complete the description of this step, we must specify the dis- 
placements of the added edges, or equivalently their upper endpoints. 
There is some freedom in this step, and this is one source of the lack of 
uniqueness in the assignment of G to 2". The only constraint is that of P5: 
if the edge has index k (k is already determined by the above prescription), 
then the kth component of the displacement along the edge must be zero. 
Suppose, however, that the edge is to be added at a eA. Because A is 
active, U-(a) contains at least two vertices, and it is always possible to 
choose one of these as the endpoint of the edge while satisfying the 
constraint. We may assume that, when more than one choice is allowable, 
the ambiguity is removed by some predetermined rule. 

Step 2. Now recall that U(A) has been partitioned into clusters, 
called the parents of A; we want to add spacelike edges joining pairs of ver- 
tices of ~'(A) so that each parent will satisfy the overall current conserva- 
tion required by P6'. 

Suppose that the timelike edge of index k, k = 1, 2, 3, which was added 
at step 1 is incident on a vertex of ~'(A) lying in a cluster Bk; two or all 
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three of the clusters B1, B2, and B 3 may coincide. Because the graph 
H - H ( A ) ,  whose vertices are the parents of A, is connected, we can choose 
a minimal tree T in H connecting the vertices B1, B2, and B 3. We want to 
assign orientations and current indices to the links of T. Current enters T 
at these distinguished vertices; there is then clearly a unique way to specify 
an orientation and an index k for each link in T so that current conserva- 
tion is satisfied at each vertex of T. Note that it is possible for B1, B2, and 
B 3 to coincide, so that T consists of a single vertex and no lines of T are 
assigned current. 

Finally, we add spacelike edges to Gn+l. By the definition of 
adjacency in H, any two parents B and B' which are adjacent as vertices 
of T must both intersect some U(a) for a e A; hence, there exist b ~ B and 
b'~ B' which are adjacent (i.e., next nearest neighbors) in the lattice. For 
each such pair B, B' we add to Gn + 1 a spacelike edge joining b and b', with 
the same index as, and corresponding orientation to, the link of T joining 
B with B'. This completes the construction of the portion of Gn+l lying 
above A. 

Suppose now that we have constructed Gn+l by applying steps 1 and 
2 to each active cluster of G,. It is easy to see that the resulting graph 
posesses properties P2 P5 and PI ' ,  P6', and P7'; we will discuss only the 
last two of these. Consider what happens during the application of steps 1 
and 2 to a particular active cluster A. For P6', note that each parent of A 
which is a vertex of T becomes a biped or a triped in G,+I ,  according to 
the sum of its degree in T and the number of timelike edges from step 1 
which enter it (there will be exactly one triped). Parents which are not 
vertices of T are irrelevant in Gn + 1. For  P7', note that if T contains r vertices, 
r' of which are terminal clusters of Gn+l, then we have added r - 1  
spacelike edges in step 2, increased l~an be r', and added r - r '  new active 
clusters and removed one (A itself), so that (A.13) is preserved. 

This completes the proof of Toom's theorem. Figure 5 shows a simple 
Toom graph constructed by this procedure, Fig. 6 a more complicated 
example with branching. Note that current conservation forces the graphs 
to have a characteristic three-branched structure. | 

A P P E N D I X  B. D E T A I L E D  B A L A N C E  

In this appendix we make some brief comments on the question of 
detailed balance for the PCA evolution with respect to its invariant 
measures. The condition v - - v P  for invariance may from (1.8) be written in 
the form 

I I-P(d_r/k_r/') v(~')-P(d~l'l~) v(d_~)] = 0  (B.1) 
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where the integration is over the _r/' variable. The evolution P is said to be 
reversible or to satisfy detailed balance with respect to v if the integrand in 
(B.1) vanishes identically, i.e., if 

P(d_,1 I_~') ~(@') = P(@'I ~) v(@) (B.2) 

It is natural to ask when a given PCA satisfies (B.2). It turns out that 
a very simple criterion can be given in terms of the representation (1.3): 
(B.2) will be satisfied if h(_t/) has the form 

h~(q)=tanh[j~+ J(i-j)tlj+b ] (B.3) 

with symmetric inputs: J(k)=J(-k). The corresponding stationary v is 
then given formally (or in finite volume) by 

(B.4) 

with Z 1 a normalization constant and with Po the Bernoulli measure 
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TIME + k --" 2 
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0 

Fig. 5. Simple Toom graph in symmetric presentation. Edges of type k cannot be drawn 
parallel to axis k; current is conserved at each vertex�9 
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giving all spin configurations equal weight. Thus v is a Gibbs measure for 
the d-dimensional Hamiltonian H(d~= Z,  H~a)(q), where 

/ \ 
H~d)(/7) = -bq i - - l og  2 cosh ( ~ ' J ( i - j ) t l j +  b ) =  - b t  h -  ~J(Ad)1~A+i (B.5) 

\ j  / A 

for appropriate c o n s t a n t s  j (d )  defined for A c U. The Hamiltonian of (B.5) 
is of course to be distinguished from the (d+l)-dimensional  ESM 
Hamiltonian defined in (1.10), which here becomes 

Hn, i(ff ) = - 2 b # , , , -  ~ tyn, i J ( i - j )  an_ l, j -  H~a)(ff n 1) 
J (B.6) 

It should be noted that the special form of the Hamiltonian H (d) 
precludes, in general, the construction of a PCA dynamics which will 
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satisfy detailed balance for an a priori given Gibbs measure ~ arising from 
some Hamiltonian/~(a); this is in contrast to continuous time or sequential 
updatings where a suitable choice of stochastic dynamics is always possible. 
On the other hand, the construction of Domany (1) discussed in Examples 
5.1 and 5.2 provides, for certain Hamiltonians with one- and two-body 
interactions (see (B.12)), a solution to the difficulty. Suppose that the 
d-dimensional lattice B_ (~ may be written as l_(~ we will 
write r/(+) for the spin configurations on the separate sublattices and 
~(dt/(-+51g(-v-)) for the measure on one sublattice conditioned on the spin 
configuration on the other. Now consider a "top-step" updating of the 
spin configuration on ~_(0), defined by 

P(@~+II_~) = P( + )( dgS,+ t, lffl,+)g~-+tl)P(-)(dcr~+)ll- g,  g,, ) ( + ) ( )  (B.7) 

and the "time reversed adjoint" updating 

p*(dg.+llg~)=p()(d_a(+) 1 _~+1_a..r ())_p(+)t.4..(+),~_..~+~ :na(+)a(-h:,~ , (B .8 )  

A modified detail balance condition, which ensures that the stationary 
stochastic process looks statistically the same when run forwards and back- 
wards in time, is then 

P(@ I r/') ~7(@') = P*(@'  I ~7) fi(@) 

The condition (B.9) is clearly satisfied if we take 

P(-+)(@~) I f )  = ~(@r f< ~ )) 

(B.9) 

Note that if the conditional measures are in fact product measures, then the 
updatings P(+) are of PCA type, but the two-step updating P is not, since 
the measure on gn+l,  conditioned on gn, is not a product measure. This 
will be the case if ~ is the Gibbs measure 

with 

g(_t/) = Z 1 e x p [ - H ( a ) ( g ) ]  

H(d)(~_) = ~ J ( i - j )  ~lirl'j 
i e  L {T) 

j e L (  + ) 

where J ( k ) = J ( - k ) .  A uniform magnetic field may also be included. The 
models of Examples 5.1 and 5.2 are of this form. 

More generally, one may take 

exp-rliRl+-)(~ ') 
P(-+'(@(-+)lg') = lq - ~ c o - ~ ~  P~ 

i ~  k (-+1 

(B.13) 

(B.!I)  

(B.IO) 
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with 

Rl-+~(ff') = ~ J ( i - j )  t f j+fr (B.14) 
ic L(+3 

where J ( k ) = J ( - k )  and f,(-+)(_t/'(~)) vanishes whenever Z inn i a / J ( i - j ) 11}  
5 0  and has some constant  value, independent  of _r/', otherwise. The 
resulting P of  (B.7) will still satisfy detailed balance with respect to the 
Gibbs measure (B. 11)-(B. 12). This generalization of the D o m a n y  rules per- 
mits us to write the stat ionary measure of a one dimensional PCA which 
is updated alternatively, on the even and odd sites, according to a majori ty 
rule of  a site and its two neighbors with noise, as the Gibbs state of a one- 
dimensional  Ising model  with nearest-neighbor interactions. It follows that  
the P C A  will be ergodic and that the corresponding ESM will have no 
phase transitions. As remarked earlier, the corresponding result for 
simultaneous updat ings has recently been proven by Gray.  (16) 
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